Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
from transformers import BertConfig, is_flax_available | |
from transformers.testing_utils import require_flax, slow | |
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
if is_flax_available(): | |
from transformers.models.bert.modeling_flax_bert import ( | |
FlaxBertForMaskedLM, | |
FlaxBertForMultipleChoice, | |
FlaxBertForNextSentencePrediction, | |
FlaxBertForPreTraining, | |
FlaxBertForQuestionAnswering, | |
FlaxBertForSequenceClassification, | |
FlaxBertForTokenClassification, | |
FlaxBertModel, | |
) | |
class FlaxBertModelTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_attention_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_choices=4, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_attention_mask = use_attention_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_choices = num_choices | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
attention_mask = None | |
if self.use_attention_mask: | |
attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
config = BertConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
) | |
return config, input_ids, token_type_ids, attention_mask | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, token_type_ids, attention_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} | |
return config, inputs_dict | |
def prepare_config_and_inputs_for_decoder(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, token_type_ids, attention_mask = config_and_inputs | |
config.is_decoder = True | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
class FlaxBertModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
test_head_masking = True | |
all_model_classes = ( | |
( | |
FlaxBertModel, | |
FlaxBertForPreTraining, | |
FlaxBertForMaskedLM, | |
FlaxBertForMultipleChoice, | |
FlaxBertForQuestionAnswering, | |
FlaxBertForNextSentencePrediction, | |
FlaxBertForSequenceClassification, | |
FlaxBertForTokenClassification, | |
FlaxBertForQuestionAnswering, | |
) | |
if is_flax_available() | |
else () | |
) | |
def setUp(self): | |
self.model_tester = FlaxBertModelTester(self) | |
def test_model_from_pretrained(self): | |
# Only check this for base model, not necessary for all model classes. | |
# This will also help speed-up tests. | |
model = FlaxBertModel.from_pretrained("bert-base-cased") | |
outputs = model(np.ones((1, 1))) | |
self.assertIsNotNone(outputs) | |