Spaces:
Runtime error
Runtime error
import unittest | |
from pathlib import Path | |
from tempfile import TemporaryDirectory | |
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available | |
from transformers.models.bert.tokenization_bert import BertTokenizer | |
from transformers.testing_utils import require_tensorflow_text, require_tf, slow | |
if is_tf_available(): | |
import tensorflow as tf | |
if is_tensorflow_text_available(): | |
from transformers.models.bert import TFBertTokenizer | |
TOKENIZER_CHECKPOINTS = ["bert-base-uncased", "bert-base-cased"] | |
TINY_MODEL_CHECKPOINT = "hf-internal-testing/tiny-bert-tf-only" | |
if is_tf_available(): | |
class ModelToSave(tf.keras.Model): | |
def __init__(self, tokenizer): | |
super().__init__() | |
self.tokenizer = tokenizer | |
config = AutoConfig.from_pretrained(TINY_MODEL_CHECKPOINT) | |
self.bert = TFAutoModel.from_config(config) | |
def call(self, inputs): | |
tokenized = self.tokenizer(inputs) | |
out = self.bert(**tokenized) | |
return out["pooler_output"] | |
class BertTokenizationTest(unittest.TestCase): | |
# The TF tokenizers are usually going to be used as pretrained tokenizers from existing model checkpoints, | |
# so that's what we focus on here. | |
def setUp(self): | |
super().setUp() | |
self.tokenizers = [ | |
BertTokenizer.from_pretrained(checkpoint) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) | |
] # repeat for when fast_bert_tokenizer=false | |
self.tf_tokenizers = [TFBertTokenizer.from_pretrained(checkpoint) for checkpoint in TOKENIZER_CHECKPOINTS] + [ | |
TFBertTokenizer.from_pretrained(checkpoint, use_fast_bert_tokenizer=False) | |
for checkpoint in TOKENIZER_CHECKPOINTS | |
] | |
assert len(self.tokenizers) == len(self.tf_tokenizers) | |
self.test_sentences = [ | |
"This is a straightforward English test sentence.", | |
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", | |
"Now we're going to add some Chinese: 一 二 三 一二三", | |
"And some much more rare Chinese: 齉 堃 齉堃", | |
"Je vais aussi écrire en français pour tester les accents", | |
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", | |
] | |
self.paired_sentences = list(zip(self.test_sentences, self.test_sentences[::-1])) | |
def test_output_equivalence(self): | |
for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): | |
for test_inputs in (self.test_sentences, self.paired_sentences): | |
python_outputs = tokenizer(test_inputs, return_tensors="tf", padding="longest") | |
tf_outputs = tf_tokenizer(test_inputs) | |
for key in python_outputs.keys(): | |
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) | |
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key], tf.int64) == tf_outputs[key])) | |
def test_different_pairing_styles(self): | |
for tf_tokenizer in self.tf_tokenizers: | |
merged_outputs = tf_tokenizer(self.paired_sentences) | |
separated_outputs = tf_tokenizer( | |
text=[sentence[0] for sentence in self.paired_sentences], | |
text_pair=[sentence[1] for sentence in self.paired_sentences], | |
) | |
for key in merged_outputs.keys(): | |
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key], tf.int64) == separated_outputs[key])) | |
def test_graph_mode(self): | |
for tf_tokenizer in self.tf_tokenizers: | |
compiled_tokenizer = tf.function(tf_tokenizer) | |
for test_inputs in (self.test_sentences, self.paired_sentences): | |
test_inputs = tf.constant(test_inputs) | |
compiled_outputs = compiled_tokenizer(test_inputs) | |
eager_outputs = tf_tokenizer(test_inputs) | |
for key in eager_outputs.keys(): | |
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) | |
def test_saved_model(self): | |
for tf_tokenizer in self.tf_tokenizers: | |
model = ModelToSave(tokenizer=tf_tokenizer) | |
test_inputs = tf.convert_to_tensor(self.test_sentences) | |
out = model(test_inputs) # Build model with some sample inputs | |
with TemporaryDirectory() as tempdir: | |
save_path = Path(tempdir) / "saved.model" | |
model.save(save_path) | |
loaded_model = tf.keras.models.load_model(save_path) | |
loaded_output = loaded_model(test_inputs) | |
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test | |
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)), 1e-5) | |