Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available | |
from transformers.testing_utils import require_tf, require_tokenizers, slow, tooslow | |
from transformers.utils import cached_property | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers import TFAutoModelForSeq2SeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel | |
class TFBlenderbotModelTester: | |
config_cls = BlenderbotConfig | |
config_updates = {} | |
hidden_act = "gelu" | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_labels=False, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=20, | |
eos_token_id=2, | |
pad_token_id=1, | |
bos_token_id=0, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.eos_token_id = eos_token_id | |
self.pad_token_id = pad_token_id | |
self.bos_token_id = bos_token_id | |
def prepare_config_and_inputs_for_common(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) | |
eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) | |
input_ids = tf.concat([input_ids, eos_tensor], axis=1) | |
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
config = self.config_cls( | |
vocab_size=self.vocab_size, | |
d_model=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
eos_token_ids=[2], | |
bos_token_id=self.bos_token_id, | |
pad_token_id=self.pad_token_id, | |
decoder_start_token_id=self.pad_token_id, | |
**self.config_updates, | |
) | |
inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids) | |
return config, inputs_dict | |
def check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
model = TFBlenderbotModel(config=config).get_decoder() | |
input_ids = inputs_dict["input_ids"] | |
input_ids = input_ids[:1, :] | |
attention_mask = inputs_dict["attention_mask"][:1, :] | |
head_mask = inputs_dict["head_mask"] | |
self.batch_size = 1 | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8) | |
# append to next input_ids and | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0] | |
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] | |
output_from_past_slice = output_from_past[:, :, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) | |
def prepare_blenderbot_inputs_dict( | |
config, | |
input_ids, | |
decoder_input_ids, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
): | |
if attention_mask is None: | |
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) | |
if decoder_attention_mask is None: | |
decoder_attention_mask = tf.concat( | |
[ | |
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), | |
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), | |
], | |
axis=-1, | |
) | |
if head_mask is None: | |
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) | |
if decoder_head_mask is None: | |
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) | |
if cross_attn_head_mask is None: | |
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) | |
return { | |
"input_ids": input_ids, | |
"decoder_input_ids": decoder_input_ids, | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
} | |
class TFBlenderbotModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () | |
all_generative_model_classes = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"conversational": TFBlenderbotForConditionalGeneration, | |
"feature-extraction": TFBlenderbotModel, | |
"summarization": TFBlenderbotForConditionalGeneration, | |
"text2text-generation": TFBlenderbotForConditionalGeneration, | |
"translation": TFBlenderbotForConditionalGeneration, | |
} | |
if is_tf_available() | |
else {} | |
) | |
is_encoder_decoder = True | |
test_pruning = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFBlenderbotModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BlenderbotConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_decoder_model_past_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() | |
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
if model_class in self.all_generative_model_classes: | |
x = model.get_output_embeddings() | |
assert isinstance(x, tf.keras.layers.Layer) | |
name = model.get_bias() | |
assert isinstance(name, dict) | |
for k, v in name.items(): | |
assert isinstance(v, tf.Variable) | |
else: | |
x = model.get_output_embeddings() | |
assert x is None | |
name = model.get_bias() | |
assert name is None | |
def test_saved_model_creation(self): | |
pass | |
class TFBlenderbot400MIntegrationTests(unittest.TestCase): | |
src_text = ["My friends are cool but they eat too many carbs."] | |
model_name = "facebook/blenderbot-400M-distill" | |
def tokenizer(self): | |
return BlenderbotTokenizer.from_pretrained(self.model_name) | |
def model(self): | |
model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name) | |
return model | |
def test_generation_from_long_input(self): | |
model_inputs = self.tokenizer(self.src_text, return_tensors="tf") | |
generated_ids = self.model.generate( | |
model_inputs.input_ids, | |
) | |
generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)[0] | |
assert ( | |
generated_words | |
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" | |
) | |