Spaces:
Runtime error
Runtime error
import inspect | |
import tempfile | |
import unittest | |
import numpy as np | |
import transformers | |
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig, is_flax_available, is_torch_available | |
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow | |
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
if is_flax_available(): | |
import jax | |
import jax.numpy as jnp | |
from transformers.modeling_flax_pytorch_utils import ( | |
convert_pytorch_state_dict_to_flax, | |
load_flax_weights_in_pytorch_model, | |
) | |
from transformers.models.clip.modeling_flax_clip import FlaxCLIPModel, FlaxCLIPTextModel, FlaxCLIPVisionModel | |
if is_torch_available(): | |
import torch | |
class FlaxCLIPVisionModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
image_size=30, | |
patch_size=2, | |
num_channels=3, | |
is_training=True, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
config = CLIPVisionConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
initializer_range=self.initializer_range, | |
) | |
return config, pixel_values | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class FlaxCLIPVisionModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (FlaxCLIPVisionModel,) if is_flax_available() else () | |
def setUp(self): | |
self.model_tester = FlaxCLIPVisionModelTester(self) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.__call__) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_jit_compilation(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
model = model_class(config) | |
def model_jitted(pixel_values, **kwargs): | |
return model(pixel_values=pixel_values, **kwargs).to_tuple() | |
with self.subTest("JIT Enabled"): | |
jitted_outputs = model_jitted(**prepared_inputs_dict) | |
with self.subTest("JIT Disabled"): | |
with jax.disable_jit(): | |
outputs = model_jitted(**prepared_inputs_dict) | |
self.assertEqual(len(outputs), len(jitted_outputs)) | |
for jitted_output, output in zip(jitted_outputs, outputs): | |
self.assertEqual(jitted_output.shape, output.shape) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1) | |
# CLIP has a different seq_length | |
image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
seq_length = num_patches + 1 | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
# in CLIP, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) | |
image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
seq_length = num_patches + 1 | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_length, seq_length], | |
) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
added_hidden_states = 1 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_length, seq_length], | |
) | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_from_base(self): | |
pass | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_to_base(self): | |
pass | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_from_base_pt(self): | |
pass | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_to_base_pt(self): | |
pass | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_bf16_to_base_pt(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_class_name in self.all_model_classes: | |
model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) | |
outputs = model(np.ones((1, 3, 224, 224))) | |
self.assertIsNotNone(outputs) | |
class FlaxCLIPTextModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
if input_mask is not None: | |
batch_size, seq_length = input_mask.shape | |
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
input_mask[batch_idx, :start_index] = 1 | |
input_mask[batch_idx, start_index:] = 0 | |
config = CLIPTextConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
) | |
return config, input_ids, input_mask | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, input_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class FlaxCLIPTextModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
all_model_classes = (FlaxCLIPTextModel,) if is_flax_available() else () | |
def setUp(self): | |
self.model_tester = FlaxCLIPTextModelTester(self) | |
# FlaxCLIPTextModel does not have any base model | |
def test_save_load_from_base(self): | |
pass | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_to_base(self): | |
pass | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_from_base_pt(self): | |
pass | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_to_base_pt(self): | |
pass | |
# FlaxCLIPVisionModel does not have any base model | |
def test_save_load_bf16_to_base_pt(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_class_name in self.all_model_classes: | |
model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) | |
outputs = model(np.ones((1, 1))) | |
self.assertIsNotNone(outputs) | |
class FlaxCLIPModelTester: | |
def __init__(self, parent, is_training=True): | |
self.parent = parent | |
self.text_model_tester = FlaxCLIPTextModelTester(parent) | |
self.vision_model_tester = FlaxCLIPVisionModelTester(parent) | |
self.is_training = is_training | |
def prepare_config_and_inputs(self): | |
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
config = CLIPConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64) | |
return config, input_ids, attention_mask, pixel_values | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, attention_mask, pixel_values = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
} | |
return config, inputs_dict | |
class FlaxCLIPModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
all_model_classes = (FlaxCLIPModel,) if is_flax_available() else () | |
test_attention_outputs = False | |
def setUp(self): | |
self.model_tester = FlaxCLIPModelTester(self) | |
# hidden_states are tested in individual model tests | |
def test_hidden_states_output(self): | |
pass | |
def test_jit_compilation(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
model = model_class(config) | |
def model_jitted(input_ids, pixel_values, **kwargs): | |
return model(input_ids=input_ids, pixel_values=pixel_values, **kwargs).to_tuple() | |
with self.subTest("JIT Enabled"): | |
jitted_outputs = model_jitted(**prepared_inputs_dict) | |
with self.subTest("JIT Disabled"): | |
with jax.disable_jit(): | |
outputs = model_jitted(**prepared_inputs_dict) | |
self.assertEqual(len(outputs), len(jitted_outputs)) | |
for jitted_output, output in zip(jitted_outputs[:4], outputs[:4]): | |
self.assertEqual(jitted_output.shape, output.shape) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.__call__) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["input_ids", "pixel_values", "attention_mask", "position_ids"] | |
self.assertListEqual(arg_names[:4], expected_arg_names) | |
def test_get_image_features(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
model = FlaxCLIPModel(config) | |
def model_jitted(pixel_values): | |
return model.get_image_features(pixel_values=pixel_values) | |
with self.subTest("JIT Enabled"): | |
jitted_output = model_jitted(inputs_dict["pixel_values"]) | |
with self.subTest("JIT Disabled"): | |
with jax.disable_jit(): | |
output = model_jitted(inputs_dict["pixel_values"]) | |
self.assertEqual(jitted_output.shape, output.shape) | |
self.assertTrue(np.allclose(jitted_output, output, atol=1e-3)) | |
def test_get_text_features(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
model = FlaxCLIPModel(config) | |
def model_jitted(input_ids, attention_mask, **kwargs): | |
return model.get_text_features(input_ids=input_ids, attention_mask=attention_mask) | |
with self.subTest("JIT Enabled"): | |
jitted_output = model_jitted(**inputs_dict) | |
with self.subTest("JIT Disabled"): | |
with jax.disable_jit(): | |
output = model_jitted(**inputs_dict) | |
self.assertEqual(jitted_output.shape, output.shape) | |
self.assertTrue(np.allclose(jitted_output, output, atol=1e-3)) | |
def test_model_from_pretrained(self): | |
for model_class_name in self.all_model_classes: | |
model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) | |
outputs = model(input_ids=np.ones((1, 1)), pixel_values=np.ones((1, 3, 224, 224))) | |
self.assertIsNotNone(outputs) | |
# overwrite from common since FlaxCLIPModel returns nested output | |
# which is not supported in the common test | |
def test_equivalence_pt_to_flax(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
# prepare inputs | |
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} | |
# load corresponding PyTorch class | |
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning | |
pt_model_class = getattr(transformers, pt_model_class_name) | |
pt_model = pt_model_class(config).eval() | |
fx_model = model_class(config, dtype=jnp.float32) | |
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) | |
fx_model.params = fx_state | |
with torch.no_grad(): | |
pt_outputs = pt_model(**pt_inputs).to_tuple() | |
fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() | |
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): | |
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pt_model.save_pretrained(tmpdirname) | |
fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) | |
fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple() | |
self.assertEqual( | |
len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" | |
) | |
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): | |
self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) | |
# overwrite from common since FlaxCLIPModel returns nested output | |
# which is not supported in the common test | |
def test_equivalence_flax_to_pt(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
# prepare inputs | |
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} | |
# load corresponding PyTorch class | |
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning | |
pt_model_class = getattr(transformers, pt_model_class_name) | |
pt_model = pt_model_class(config).eval() | |
fx_model = model_class(config, dtype=jnp.float32) | |
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) | |
# make sure weights are tied in PyTorch | |
pt_model.tie_weights() | |
with torch.no_grad(): | |
pt_outputs = pt_model(**pt_inputs).to_tuple() | |
fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() | |
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): | |
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
fx_model.save_pretrained(tmpdirname) | |
pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) | |
with torch.no_grad(): | |
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() | |
self.assertEqual( | |
len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" | |
) | |
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]): | |
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
# overwrite from common since FlaxCLIPModel returns nested output | |
# which is not supported in the common test | |
def test_from_pretrained_save_pretrained(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
if model_class.__name__ != "FlaxBertModel": | |
continue | |
with self.subTest(model_class.__name__): | |
model = model_class(config) | |
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
outputs = model(**prepared_inputs_dict).to_tuple() | |
# verify that normal save_pretrained works as expected | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model_loaded = model_class.from_pretrained(tmpdirname) | |
outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()[:4] | |
for output_loaded, output in zip(outputs_loaded, outputs): | |
self.assert_almost_equals(output_loaded, output, 1e-3) | |
# verify that save_pretrained for distributed training | |
# with `params=params` works as expected | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, params=model.params) | |
model_loaded = model_class.from_pretrained(tmpdirname) | |
outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()[:4] | |
for output_loaded, output in zip(outputs_loaded, outputs): | |
self.assert_almost_equals(output_loaded, output, 1e-3) | |