Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
from transformers import ConvBertConfig, is_tf_available | |
from transformers.testing_utils import require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers import ( | |
TFConvBertForMaskedLM, | |
TFConvBertForMultipleChoice, | |
TFConvBertForQuestionAnswering, | |
TFConvBertForSequenceClassification, | |
TFConvBertForTokenClassification, | |
TFConvBertModel, | |
) | |
class TFConvBertModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = 13 | |
self.seq_length = 7 | |
self.is_training = True | |
self.use_input_mask = True | |
self.use_token_type_ids = True | |
self.use_labels = True | |
self.vocab_size = 99 | |
self.hidden_size = 384 | |
self.num_hidden_layers = 5 | |
self.num_attention_heads = 4 | |
self.intermediate_size = 37 | |
self.hidden_act = "gelu" | |
self.hidden_dropout_prob = 0.1 | |
self.attention_probs_dropout_prob = 0.1 | |
self.max_position_embeddings = 512 | |
self.type_vocab_size = 16 | |
self.type_sequence_label_size = 2 | |
self.initializer_range = 0.02 | |
self.num_labels = 3 | |
self.num_choices = 4 | |
self.embedding_size = 128 | |
self.head_ratio = 2 | |
self.conv_kernel_size = 9 | |
self.num_groups = 1 | |
self.scope = None | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = ConvBertConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
return_dict=True, | |
) | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def create_and_check_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFConvBertModel(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
inputs = [input_ids, input_mask] | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFConvBertForMaskedLM(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_sequence_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFConvBertForSequenceClassification(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_multiple_choice( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = TFConvBertForMultipleChoice(config=config) | |
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) | |
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) | |
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) | |
inputs = { | |
"input_ids": multiple_choice_inputs_ids, | |
"attention_mask": multiple_choice_input_mask, | |
"token_type_ids": multiple_choice_token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFConvBertForTokenClassification(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFConvBertForQuestionAnswering(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class TFConvBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
TFConvBertModel, | |
TFConvBertForMaskedLM, | |
TFConvBertForQuestionAnswering, | |
TFConvBertForSequenceClassification, | |
TFConvBertForTokenClassification, | |
TFConvBertForMultipleChoice, | |
) | |
if is_tf_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": TFConvBertModel, | |
"fill-mask": TFConvBertForMaskedLM, | |
"question-answering": TFConvBertForQuestionAnswering, | |
"text-classification": TFConvBertForSequenceClassification, | |
"token-classification": TFConvBertForTokenClassification, | |
"zero-shot": TFConvBertForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_pruning = False | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFConvBertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_saved_model_creation_extended(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = True | |
if hasattr(config, "use_cache"): | |
config.use_cache = True | |
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) | |
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
for model_class in self.all_model_classes: | |
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
model = model_class(config) | |
num_out = len(model(class_inputs_dict)) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, saved_model=True) | |
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") | |
model = tf.keras.models.load_model(saved_model_dir) | |
outputs = model(class_inputs_dict) | |
if self.is_encoder_decoder: | |
output_hidden_states = outputs["encoder_hidden_states"] | |
output_attentions = outputs["encoder_attentions"] | |
else: | |
output_hidden_states = outputs["hidden_states"] | |
output_attentions = outputs["attentions"] | |
self.assertEqual(len(outputs), num_out) | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual(len(output_hidden_states), expected_num_layers) | |
self.assertListEqual( | |
list(output_hidden_states[0].shape[-2:]), | |
[self.model_tester.seq_length, self.model_tester.hidden_size], | |
) | |
self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(output_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], | |
) | |
def test_model_from_pretrained(self): | |
model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") | |
self.assertIsNotNone(model) | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) | |
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) | |
decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) | |
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
def check_decoder_attentions_output(outputs): | |
out_len = len(outputs) | |
self.assertEqual(out_len % 2, 0) | |
decoder_attentions = outputs.decoder_attentions | |
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(decoder_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], | |
) | |
def check_encoder_attentions_output(outputs): | |
attentions = [ | |
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) | |
] | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], | |
) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
config.output_hidden_states = False | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
out_len = len(outputs) | |
self.assertEqual(config.output_hidden_states, False) | |
check_encoder_attentions_output(outputs) | |
if self.is_encoder_decoder: | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(config.output_hidden_states, False) | |
check_decoder_attentions_output(outputs) | |
# Check that output attentions can also be changed via the config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(config.output_hidden_states, False) | |
check_encoder_attentions_output(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
config.output_hidden_states = True | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) | |
self.assertEqual(model.config.output_hidden_states, True) | |
check_encoder_attentions_output(outputs) | |
class TFConvBertModelIntegrationTest(unittest.TestCase): | |
def test_inference_masked_lm(self): | |
model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") | |
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) | |
output = model(input_ids)[0] | |
expected_shape = [1, 6, 768] | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = tf.constant( | |
[ | |
[ | |
[-0.03475493, -0.4686034, -0.30638832], | |
[0.22637248, -0.26988646, -0.7423424], | |
[0.10324868, -0.45013508, -0.58280784], | |
] | |
] | |
) | |
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) | |