Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import CTRLConfig, is_tf_available | |
from transformers.testing_utils import require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers.models.ctrl.modeling_tf_ctrl import ( | |
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFCTRLForSequenceClassification, | |
TFCTRLLMHeadModel, | |
TFCTRLModel, | |
) | |
class TFCTRLModelTester(object): | |
def __init__( | |
self, | |
parent, | |
): | |
self.parent = parent | |
self.batch_size = 13 | |
self.seq_length = 7 | |
self.is_training = True | |
self.use_token_type_ids = True | |
self.use_input_mask = True | |
self.use_labels = True | |
self.use_mc_token_ids = True | |
self.vocab_size = 99 | |
self.hidden_size = 32 | |
self.num_hidden_layers = 5 | |
self.num_attention_heads = 4 | |
self.intermediate_size = 37 | |
self.hidden_act = "gelu" | |
self.hidden_dropout_prob = 0.1 | |
self.attention_probs_dropout_prob = 0.1 | |
self.max_position_embeddings = 512 | |
self.type_vocab_size = 16 | |
self.type_sequence_label_size = 2 | |
self.initializer_range = 0.02 | |
self.num_labels = 3 | |
self.num_choices = 4 | |
self.scope = None | |
self.pad_token_id = self.vocab_size - 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
mc_token_ids = None | |
if self.use_mc_token_ids: | |
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = CTRLConfig( | |
vocab_size=self.vocab_size, | |
n_embd=self.hidden_size, | |
n_layer=self.num_hidden_layers, | |
n_head=self.num_attention_heads, | |
# intermediate_size=self.intermediate_size, | |
# hidden_act=self.hidden_act, | |
# hidden_dropout_prob=self.hidden_dropout_prob, | |
# attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
# type_vocab_size=self.type_vocab_size, | |
# initializer_range=self.initializer_range, | |
pad_token_id=self.pad_token_id, | |
) | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = TFCTRLModel(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
inputs = [input_ids, None, input_mask] # None is the input for 'past' | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = TFCTRLLMHeadModel(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_ctrl_for_sequence_classification( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
config.num_labels = self.num_labels | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
inputs = { | |
"input_ids": input_ids, | |
"token_type_ids": token_type_ids, | |
"labels": sequence_labels, | |
} | |
model = TFCTRLForSequenceClassification(config) | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class TFCTRLModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel, TFCTRLForSequenceClassification) if is_tf_available() else () | |
all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": TFCTRLModel, | |
"text-classification": TFCTRLForSequenceClassification, | |
"text-generation": TFCTRLLMHeadModel, | |
"zero-shot": TFCTRLForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_head_masking = False | |
test_onnx = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": | |
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. | |
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny | |
# config could not be created. | |
return True | |
return False | |
def setUp(self): | |
self.model_tester = TFCTRLModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_ctrl_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_ctrl_model(*config_and_inputs) | |
def test_ctrl_lm_head(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs) | |
def test_ctrl_sequence_classification_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_ctrl_for_sequence_classification(*config_and_inputs) | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
list_lm_models = [TFCTRLLMHeadModel] | |
list_other_models_with_output_ebd = [TFCTRLForSequenceClassification] | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
if model_class in list_lm_models: | |
x = model.get_output_embeddings() | |
assert isinstance(x, tf.keras.layers.Layer) | |
name = model.get_bias() | |
assert isinstance(name, dict) | |
for k, v in name.items(): | |
assert isinstance(v, tf.Variable) | |
elif model_class in list_other_models_with_output_ebd: | |
x = model.get_output_embeddings() | |
assert isinstance(x, tf.keras.layers.Layer) | |
name = model.get_bias() | |
assert name is None | |
else: | |
x = model.get_output_embeddings() | |
assert x is None | |
name = model.get_bias() | |
assert name is None | |
def test_model_from_pretrained(self): | |
for model_name in TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFCTRLModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class TFCTRLModelLanguageGenerationTest(unittest.TestCase): | |
def test_lm_generate_ctrl(self): | |
model = TFCTRLLMHeadModel.from_pretrained("ctrl") | |
input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32) # Legal the president is | |
expected_output_ids = [ | |
11859, | |
0, | |
1611, | |
8, | |
5, | |
150, | |
26449, | |
2, | |
19, | |
348, | |
469, | |
3, | |
2595, | |
48, | |
20740, | |
246533, | |
246533, | |
19, | |
30, | |
5, | |
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a | |
output_ids = model.generate(input_ids, do_sample=False) | |
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) | |