# Optimization
The `.optimization` module provides:
- an optimizer with weight decay fixed that can be used to fine-tuned models, and
- several schedules in the form of schedule objects that inherit from `_LRSchedule`:
- a gradient accumulation class to accumulate the gradients of multiple batches
## AdamW (PyTorch)
[[autodoc]] AdamW
## AdaFactor (PyTorch)
[[autodoc]] Adafactor
## AdamWeightDecay (TensorFlow)
[[autodoc]] AdamWeightDecay
[[autodoc]] create_optimizer
## Schedules
### Learning Rate Schedules (Pytorch)
[[autodoc]] SchedulerType
[[autodoc]] get_scheduler
[[autodoc]] get_constant_schedule
[[autodoc]] get_constant_schedule_with_warmup
[[autodoc]] get_cosine_schedule_with_warmup
[[autodoc]] get_cosine_with_hard_restarts_schedule_with_warmup
[[autodoc]] get_linear_schedule_with_warmup
[[autodoc]] get_polynomial_decay_schedule_with_warmup
[[autodoc]] get_inverse_sqrt_schedule
### Warmup (TensorFlow)
[[autodoc]] WarmUp
## Gradient Strategies
### GradientAccumulator (TensorFlow)
[[autodoc]] GradientAccumulator