File size: 4,480 Bytes
e8861c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
""""by lyuwenyu
"""


import torch 
import torch.nn as nn 

import torchvision
torchvision.disable_beta_transforms_warning()
from torchvision import datapoints

import torchvision.transforms.v2 as T
import torchvision.transforms.v2.functional as F

from PIL import Image 
from typing import Any, Dict, List, Optional

from src.core import register, GLOBAL_CONFIG


__all__ = ['Compose', ]


RandomPhotometricDistort = register(T.RandomPhotometricDistort)
RandomZoomOut = register(T.RandomZoomOut)
# RandomIoUCrop = register(T.RandomIoUCrop)
RandomHorizontalFlip = register(T.RandomHorizontalFlip)
Resize = register(T.Resize)
ToImageTensor = register(T.ToImageTensor)
ConvertDtype = register(T.ConvertDtype)
SanitizeBoundingBox = register(T.SanitizeBoundingBox)
RandomCrop = register(T.RandomCrop)
Normalize = register(T.Normalize)



@register
class Compose(T.Compose):
    def __init__(self, ops) -> None:
        transforms = []
        if ops is not None:
            for op in ops:
                if isinstance(op, dict):
                    name = op.pop('type')
                    transfom = getattr(GLOBAL_CONFIG[name]['_pymodule'], name)(**op)
                    transforms.append(transfom)
                    # op['type'] = name
                elif isinstance(op, nn.Module):
                    transforms.append(op)

                else:
                    raise ValueError('')
        else:
            transforms =[EmptyTransform(), ]
 
        super().__init__(transforms=transforms)


@register
class EmptyTransform(T.Transform):
    def __init__(self, ) -> None:
        super().__init__()

    def forward(self, *inputs):
        inputs = inputs if len(inputs) > 1 else inputs[0]
        return inputs


@register
class PadToSize(T.Pad):
    _transformed_types = (
        Image.Image,
        datapoints.Image,
        datapoints.Video,
        datapoints.Mask,
        datapoints.BoundingBox,
    )
    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        sz = F.get_spatial_size(flat_inputs[0])
        h, w = self.spatial_size[0] - sz[0], self.spatial_size[1] - sz[1]
        self.padding = [0, 0, w, h]
        return dict(padding=self.padding)

    def __init__(self, spatial_size, fill=0, padding_mode='constant') -> None:
        if isinstance(spatial_size, int):
            spatial_size = (spatial_size, spatial_size)
        
        self.spatial_size = spatial_size
        super().__init__(0, fill, padding_mode)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:        
        fill = self._fill[type(inpt)]
        padding = params['padding']
        return F.pad(inpt, padding=padding, fill=fill, padding_mode=self.padding_mode)  # type: ignore[arg-type]

    def __call__(self, *inputs: Any) -> Any:
        outputs = super().forward(*inputs)
        if len(outputs) > 1 and isinstance(outputs[1], dict):
            outputs[1]['padding'] = torch.tensor(self.padding)
        return outputs


@register
class RandomIoUCrop(T.RandomIoUCrop):
    def __init__(self, min_scale: float = 0.3, max_scale: float = 1, min_aspect_ratio: float = 0.5, max_aspect_ratio: float = 2, sampler_options: Optional[List[float]] = None, trials: int = 40, p: float = 1.0):
        super().__init__(min_scale, max_scale, min_aspect_ratio, max_aspect_ratio, sampler_options, trials)
        self.p = p 

    def __call__(self, *inputs: Any) -> Any:
        if torch.rand(1) >= self.p:
            return inputs if len(inputs) > 1 else inputs[0]

        return super().forward(*inputs)


@register
class ConvertBox(T.Transform):
    _transformed_types = (
        datapoints.BoundingBox,
    )
    def __init__(self, out_fmt='', normalize=False) -> None:
        super().__init__()
        self.out_fmt = out_fmt
        self.normalize = normalize

        self.data_fmt = {
            'xyxy': datapoints.BoundingBoxFormat.XYXY,
            'cxcywh': datapoints.BoundingBoxFormat.CXCYWH
        }

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:  
        if self.out_fmt:
            spatial_size = inpt.spatial_size
            in_fmt = inpt.format.value.lower()
            inpt = torchvision.ops.box_convert(inpt, in_fmt=in_fmt, out_fmt=self.out_fmt)
            inpt = datapoints.BoundingBox(inpt, format=self.data_fmt[self.out_fmt], spatial_size=spatial_size)
        
        if self.normalize:
            inpt = inpt / torch.tensor(inpt.spatial_size[::-1]).tile(2)[None]

        return inpt