cheng-hust's picture
Upload rtdetr_decoder.py
7ac818a verified
raw
history blame contribute delete
25.9 kB
"""by lyuwenyu
"""
import math
import copy
from collections import OrderedDict
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.parameter import Parameter
import torch.linalg
from .denoising import get_contrastive_denoising_training_group
from .utils import deformable_attention_core_func, get_activation, inverse_sigmoid
from .utils import bias_init_with_prob
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from src.core import register
import numpy as np
import scipy.linalg as sl
__all__ = ['RTDETRTransformer']
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act='relu'):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.act = nn.Identity() if act is None else get_activation(act)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class CoPE(nn.Module):
def __init__(self,npos_max,head_dim):
super(CoPE, self).__init__()
self.npos_max = npos_max #?
self.pos_emb = nn.parameter.Parameter(torch.zeros(1,head_dim,npos_max))
def forward(self,query,attn_logits):
#compute positions
gates = torch.sigmoid(attn_logits) #sig(qk)
pos = gates.flip(-1).cumsum(dim=-1).flip(-1)
pos = pos.clamp(max=self.npos_max-1)
#interpolate from integer positions
pos_ceil = pos.ceil().long()
pos_floor = pos.floor().long()
logits_int = torch.matmul(query,self.pos_emb)
logits_ceil = logits_int.gather(-1,pos_ceil)
logits_floor = logits_int.gather(-1,pos_floor)
w = pos-pos_floor
return logits_ceil*w+logits_floor*(1-w)
class MSDeformableAttention(nn.Module):
def __init__(self, embed_dim=256, num_heads=8, num_levels=4, num_points=4,):
"""
Multi-Scale Deformable Attention Module
"""
super(MSDeformableAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.num_levels = num_levels
self.num_points = num_points
self.total_points = num_heads * num_levels * num_points
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2,)
self.attention_weights = nn.Linear(embed_dim, self.total_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
self.ms_deformable_attn_core = deformable_attention_core_func
self._reset_parameters()
def _reset_parameters(self):
# sampling_offsets
init.constant_(self.sampling_offsets.weight, 0)
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values
grid_init = grid_init.reshape(self.num_heads, 1, 1, 2).tile([1, self.num_levels, self.num_points, 1])
scaling = torch.arange(1, self.num_points + 1, dtype=torch.float32).reshape(1, 1, -1, 1)
grid_init *= scaling
self.sampling_offsets.bias.data[...] = grid_init.flatten()
# attention_weights
init.constant_(self.attention_weights.weight, 0)
init.constant_(self.attention_weights.bias, 0)
# proj
init.xavier_uniform_(self.value_proj.weight)
init.constant_(self.value_proj.bias, 0)
init.xavier_uniform_(self.output_proj.weight)
init.constant_(self.output_proj.bias, 0)
def forward(self,
query,
reference_points,
value,
value_spatial_shapes,
value_mask=None):
"""
Args:
query (Tensor): [bs, query_length, C]
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
bottom-right (1, 1), including padding area
value (Tensor): [bs, value_length, C]
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
value_level_start_index (List): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...]
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
Returns:
output (Tensor): [bs, Length_{query}, C]
"""
bs, Len_q = query.shape[:2]
Len_v = value.shape[1]
value = self.value_proj(value)
if value_mask is not None:
value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
value *= value_mask
value = value.reshape(bs, Len_v, self.num_heads, self.head_dim)
sampling_offsets = self.sampling_offsets(query).reshape(
bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2)
attention_weights = self.attention_weights(query).reshape(
bs, Len_q, self.num_heads, self.num_levels * self.num_points)
attention_weights = F.softmax(attention_weights, dim=-1).reshape(
bs, Len_q, self.num_heads, self.num_levels, self.num_points)
if reference_points.shape[-1] == 2:
offset_normalizer = torch.tensor(value_spatial_shapes)
offset_normalizer = offset_normalizer.flip([1]).reshape(
1, 1, 1, self.num_levels, 1, 2)
sampling_locations = reference_points.reshape(
bs, Len_q, 1, self.num_levels, 1, 2
) + sampling_offsets / offset_normalizer
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2] + sampling_offsets /
self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5)
else:
raise ValueError(
"Last dim of reference_points must be 2 or 4, but get {} instead.".
format(reference_points.shape[-1]))
output = self.ms_deformable_attn_core(value, value_spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
return output
class TransformerDecoderLayer(nn.Module):
def __init__(self,
d_model=256,
n_head=8,
dim_feedforward=1024,
dropout=0.,
activation="relu",
n_levels=4,
n_points=4,
cope='none',):
super(TransformerDecoderLayer, self).__init__()
# self attention
self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=True)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# cross attention
self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.activation = getattr(F, activation)
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
if cope == '24':
self.cope = CoPE(24,d_model)
elif cope == '12':
self.cope = CoPE(12,d_model)
else:
self.cope = None
# self._reset_parameters()
# def _reset_parameters(self):
# linear_init_(self.linear1)
# linear_init_(self.linear2)
# xavier_uniform_(self.linear1.weight)
# xavier_uniform_(self.linear2.weight)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
def forward(self,
tgt,
reference_points,
memory,
memory_spatial_shapes,
memory_level_start_index,
attn_mask=None,
memory_mask=None,
query_pos_embed=None):
# self attention
#print(query_pos_embed.shape)
#qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
# mask = torch.tril(torch.ones_like(qk),diagonal=0)
# mask = torch.log(mask)
# query_pos_embed = self.cope(tgt,qk) #position_embedding
# n_tgt = tgt.cpu().detach().numpy()
#itgt = tgt.new_tensor(np.array([sl.pinv(i) for i in n_tgt])) #inv_tgt
# with torch.no_grad():
# try:
# itgt = torch.linalg.pinv(tgt)
# except:
# print('wrong!!')
# itgt = torch.pinverse(tgt.detach().cpu()).cuda()
# print('qk:',qk.shape)
# print('tgt:',tgt.shape)
# print(([email protected](-1,-2)).shape)
# print('ik:',itgt.shape)
# print(torch.round(itgt@tgt))
# print([email protected](-1,-2))
# k = tgt
# q = tgt + ([email protected](-1,-2))
# print((q@(k.transpose(-1,-2))-query_pos_embed))
# if attn_mask is not None:
# attn_mask = torch.where(
# attn_mask.to(torch.bool),
# torch.zeros_like(attn_mask),
# torch.full_like(attn_mask, float('-inf'), dtype=tgt.dtype))
if self.cope == None:
q = k = self.with_pos_embed(tgt, query_pos_embed)
else:
qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
query_pos_embed = self.cope(tgt,qk)
with torch.no_grad():
try:
itgt = torch.linalg.pinv(tgt)
except:
print('wrong!!')
itgt = torch.pinverse(tgt.detach().cpu()).cuda()
k = tgt
q = tgt + ([email protected](-1,-2))
tgt2, _ = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# cross attention
if self.cope:
tgt2 = self.cross_attn(\
self.with_pos_embed(tgt, [email protected](-1,-2)),#([email protected](-1,-2))), #self.with_pos_embed(tgt, query_pos_embed),
reference_points,
memory,
memory_spatial_shapes,
memory_mask)
else:
tgt2 = self.cross_attn(\
self.with_pos_embed(tgt, query_pos_embed),
reference_points,
memory,
memory_spatial_shapes,
memory_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# ffn
tgt2 = self.forward_ffn(tgt)
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
class TransformerDecoder(nn.Module):
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
super(TransformerDecoder, self).__init__()
self.layers = nn.ModuleList([copy.deepcopy(decoder_layer) for _ in range(num_layers)])
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
def forward(self,
tgt,
ref_points_unact,
memory,
memory_spatial_shapes,
memory_level_start_index,
bbox_head,
score_head,
query_pos_head,
attn_mask=None,
memory_mask=None):
output = tgt
dec_out_bboxes = []
dec_out_logits = []
ref_points_detach = F.sigmoid(ref_points_unact)
for i, layer in enumerate(self.layers):
ref_points_input = ref_points_detach.unsqueeze(2)
query_pos_embed = query_pos_head(ref_points_detach)
output = layer(output, ref_points_input, memory,
memory_spatial_shapes, memory_level_start_index,
attn_mask, memory_mask, query_pos_embed)
inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
if self.training:
dec_out_logits.append(score_head[i](output))
if i == 0:
dec_out_bboxes.append(inter_ref_bbox)
else:
dec_out_bboxes.append(F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
elif i == self.eval_idx:
dec_out_logits.append(score_head[i](output))
dec_out_bboxes.append(inter_ref_bbox)
break
ref_points = inter_ref_bbox
ref_points_detach = inter_ref_bbox.detach(
) if self.training else inter_ref_bbox
return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
@register
class RTDETRTransformer(nn.Module):
__share__ = ['num_classes']
def __init__(self,
num_classes=80,
hidden_dim=256,
num_queries=300,
position_embed_type='sine',
feat_channels=[512, 1024, 2048],
feat_strides=[8, 16, 32],
num_levels=3,
num_decoder_points=4,
nhead=8,
num_decoder_layers=6,
dim_feedforward=1024,
dropout=0.,
activation="relu",
num_denoising=100,
label_noise_ratio=0.5,
box_noise_scale=1.0,
learnt_init_query=False,
eval_spatial_size=None,
eval_idx=-1,
eps=1e-2,
aux_loss=True,
cope='None',):
super(RTDETRTransformer, self).__init__()
assert position_embed_type in ['sine', 'learned'], \
f'ValueError: position_embed_type not supported {position_embed_type}!'
assert len(feat_channels) <= num_levels
assert len(feat_strides) == len(feat_channels)
for _ in range(num_levels - len(feat_strides)):
feat_strides.append(feat_strides[-1] * 2)
self.hidden_dim = hidden_dim
self.nhead = nhead
self.feat_strides = feat_strides
self.num_levels = num_levels
self.num_classes = num_classes
self.num_queries = num_queries
self.eps = eps
self.num_decoder_layers = num_decoder_layers
self.eval_spatial_size = eval_spatial_size
self.aux_loss = aux_loss
# backbone feature projection
self._build_input_proj_layer(feat_channels)
# Transformer module
decoder_layer = TransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, activation, num_levels, num_decoder_points,cope)
self.decoder = TransformerDecoder(hidden_dim, decoder_layer, num_decoder_layers, eval_idx)
self.num_denoising = num_denoising
self.label_noise_ratio = label_noise_ratio
self.box_noise_scale = box_noise_scale
# denoising part
if num_denoising > 0:
# self.denoising_class_embed = nn.Embedding(num_classes, hidden_dim, padding_idx=num_classes-1) # TODO for load paddle weights
self.denoising_class_embed = nn.Embedding(num_classes+1, hidden_dim, padding_idx=num_classes)
# decoder embedding
self.learnt_init_query = learnt_init_query
if learnt_init_query:
self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)
# encoder head
self.enc_output = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim,)
)
self.enc_score_head = nn.Linear(hidden_dim, num_classes)
self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)
# decoder head
self.dec_score_head = nn.ModuleList([
nn.Linear(hidden_dim, num_classes)
for _ in range(num_decoder_layers)
])
self.dec_bbox_head = nn.ModuleList([
MLP(hidden_dim, hidden_dim, 4, num_layers=3)
for _ in range(num_decoder_layers)
])
# init encoder output anchors and valid_mask
if self.eval_spatial_size:
self.anchors, self.valid_mask = self._generate_anchors()
self._reset_parameters()
def _reset_parameters(self):
bias = bias_init_with_prob(0.01)
init.constant_(self.enc_score_head.bias, bias)
init.constant_(self.enc_bbox_head.layers[-1].weight, 0)
init.constant_(self.enc_bbox_head.layers[-1].bias, 0)
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
init.constant_(cls_.bias, bias)
init.constant_(reg_.layers[-1].weight, 0)
init.constant_(reg_.layers[-1].bias, 0)
# linear_init_(self.enc_output[0])
init.xavier_uniform_(self.enc_output[0].weight)
if self.learnt_init_query:
init.xavier_uniform_(self.tgt_embed.weight)
init.xavier_uniform_(self.query_pos_head.layers[0].weight)
init.xavier_uniform_(self.query_pos_head.layers[1].weight)
def _build_input_proj_layer(self, feat_channels):
self.input_proj = nn.ModuleList()
for in_channels in feat_channels:
self.input_proj.append(
nn.Sequential(OrderedDict([
('conv', nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False)),
('norm', nn.BatchNorm2d(self.hidden_dim,))])
)
)
in_channels = feat_channels[-1]
for _ in range(self.num_levels - len(feat_channels)):
self.input_proj.append(
nn.Sequential(OrderedDict([
('conv', nn.Conv2d(in_channels, self.hidden_dim, 3, 2, padding=1, bias=False)),
('norm', nn.BatchNorm2d(self.hidden_dim))])
)
)
in_channels = self.hidden_dim
def _get_encoder_input(self, feats):
# get projection features
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
if self.num_levels > len(proj_feats):
len_srcs = len(proj_feats)
for i in range(len_srcs, self.num_levels):
if i == len_srcs:
proj_feats.append(self.input_proj[i](feats[-1]))
else:
proj_feats.append(self.input_proj[i](proj_feats[-1]))
# get encoder inputs
feat_flatten = []
spatial_shapes = []
level_start_index = [0, ]
for i, feat in enumerate(proj_feats):
_, _, h, w = feat.shape
# [b, c, h, w] -> [b, h*w, c]
feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
# [num_levels, 2]
spatial_shapes.append([h, w])
# [l], start index of each level
level_start_index.append(h * w + level_start_index[-1])
# [b, l, c]
feat_flatten = torch.concat(feat_flatten, 1)
level_start_index.pop()
return (feat_flatten, spatial_shapes, level_start_index)
def _generate_anchors(self,
spatial_shapes=None,
grid_size=0.05,
dtype=torch.float32,
device='cpu'):
if spatial_shapes is None:
spatial_shapes = [[int(self.eval_spatial_size[0] / s), int(self.eval_spatial_size[1] / s)]
for s in self.feat_strides
]
anchors = []
for lvl, (h, w) in enumerate(spatial_shapes):
grid_y, grid_x = torch.meshgrid(\
torch.arange(end=h, dtype=dtype), \
torch.arange(end=w, dtype=dtype), indexing='ij')
grid_xy = torch.stack([grid_x, grid_y], -1)
valid_WH = torch.tensor([w, h]).to(dtype)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl)
anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, h * w, 4))
anchors = torch.concat(anchors, 1).to(device)
valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True)
anchors = torch.log(anchors / (1 - anchors))
# anchors = torch.where(valid_mask, anchors, float('inf'))
# anchors[valid_mask] = torch.inf # valid_mask [1, 8400, 1]
anchors = torch.where(valid_mask, anchors, torch.inf)
return anchors, valid_mask
def _get_decoder_input(self,
memory,
spatial_shapes,
denoising_class=None,
denoising_bbox_unact=None):
bs, _, _ = memory.shape
# prepare input for decoder
if self.training or self.eval_spatial_size is None:
anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device)
else:
anchors, valid_mask = self.anchors.to(memory.device), self.valid_mask.to(memory.device)
# memory = torch.where(valid_mask, memory, 0)
memory = valid_mask.to(memory.dtype) * memory # TODO fix type error for onnx export
output_memory = self.enc_output(memory)
enc_outputs_class = self.enc_score_head(output_memory)
enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors
_, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.num_queries, dim=1)
reference_points_unact = enc_outputs_coord_unact.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_unact.shape[-1]))
enc_topk_bboxes = F.sigmoid(reference_points_unact)
if denoising_bbox_unact is not None:
reference_points_unact = torch.concat(
[denoising_bbox_unact, reference_points_unact], 1)
enc_topk_logits = enc_outputs_class.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1]))
# extract region features
if self.learnt_init_query:
target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1])
else:
target = output_memory.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
target = target.detach()
if denoising_class is not None:
target = torch.concat([denoising_class, target], 1)
return target, reference_points_unact.detach(), enc_topk_bboxes, enc_topk_logits
def forward(self, feats, targets=None):
# input projection and embedding
(memory, spatial_shapes, level_start_index) = self._get_encoder_input(feats)
# prepare denoising training
if self.training and self.num_denoising > 0:
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
get_contrastive_denoising_training_group(targets, \
self.num_classes,
self.num_queries,
self.denoising_class_embed,
num_denoising=self.num_denoising,
label_noise_ratio=self.label_noise_ratio,
box_noise_scale=self.box_noise_scale, )
else:
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None
target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
self._get_decoder_input(memory, spatial_shapes, denoising_class, denoising_bbox_unact)
# decoder
out_bboxes, out_logits = self.decoder(
target,
init_ref_points_unact,
memory,
spatial_shapes,
level_start_index,
self.dec_bbox_head,
self.dec_score_head,
self.query_pos_head,
attn_mask=attn_mask)
if self.training and dn_meta is not None:
dn_out_bboxes, out_bboxes = torch.split(out_bboxes, dn_meta['dn_num_split'], dim=2)
dn_out_logits, out_logits = torch.split(out_logits, dn_meta['dn_num_split'], dim=2)
out = {'pred_logits': out_logits[-1], 'pred_boxes': out_bboxes[-1]}
if self.training and self.aux_loss:
out['aux_outputs'] = self._set_aux_loss(out_logits[:-1], out_bboxes[:-1])
out['aux_outputs'].extend(self._set_aux_loss([enc_topk_logits], [enc_topk_bboxes]))
if self.training and dn_meta is not None:
out['dn_aux_outputs'] = self._set_aux_loss(dn_out_logits, dn_out_bboxes)
out['dn_meta'] = dn_meta
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{'pred_logits': a, 'pred_boxes': b}
for a, b in zip(outputs_class, outputs_coord)]