'''by lyuwenyu ''' import torch import torch.nn as nn class ConvNormLayer(nn.Module): def __init__(self, ch_in, ch_out, kernel_size, stride, padding=None, bias=False, act=None): super().__init__() self.conv = nn.Conv2d( ch_in, ch_out, kernel_size, stride, padding=(kernel_size-1)//2 if padding is None else padding, bias=bias) self.norm = nn.BatchNorm2d(ch_out) self.act = nn.Identity() if act is None else get_activation(act) def forward(self, x): return self.act(self.norm(self.conv(x))) class FrozenBatchNorm2d(nn.Module): """copy and modified from https://github.com/facebookresearch/detr/blob/master/models/backbone.py BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, num_features, eps=1e-5): super(FrozenBatchNorm2d, self).__init__() n = num_features self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) self.eps = eps self.num_features = n def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): num_batches_tracked_key = prefix + 'num_batches_tracked' if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def forward(self, x): # move reshapes to the beginning # to make it fuser-friendly w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) scale = w * (rv + self.eps).rsqrt() bias = b - rm * scale return x * scale + bias def extra_repr(self): return ( "{num_features}, eps={eps}".format(**self.__dict__) ) def get_activation(act: str, inpace: bool=True): '''get activation ''' act = act.lower() if act == 'silu': m = nn.SiLU() elif act == 'relu': m = nn.ReLU() elif act == 'leaky_relu': m = nn.LeakyReLU() elif act == 'silu': m = nn.SiLU() elif act == 'gelu': m = nn.GELU() elif act is None: m = nn.Identity() elif isinstance(act, nn.Module): m = act else: raise RuntimeError('') if hasattr(m, 'inplace'): m.inplace = inpace return m