Spaces:
Sleeping
Sleeping
app.py
CHANGED
@@ -1,320 +1,356 @@
|
|
1 |
-
import subprocess
|
2 |
-
import sys
|
3 |
import os
|
4 |
-
import
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
# 检查transformers
|
19 |
try:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
packages_to_install = [
|
28 |
-
"transformers==4.35.2",
|
29 |
-
"accelerate==0.24.1",
|
30 |
-
"bitsandbytes==0.41.3"
|
31 |
-
]
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
print(f"✅ {package} 安装成功")
|
37 |
-
else:
|
38 |
-
print(f"❌ {package} 安装失败")
|
39 |
|
40 |
-
# 再次检查
|
41 |
try:
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
return True
|
45 |
-
except ImportError:
|
46 |
-
print("❌ transformers 安装后仍不可用")
|
47 |
-
return False
|
48 |
-
|
49 |
-
# 检查并安装依赖
|
50 |
-
dependencies_ok = check_and_install_dependencies()
|
51 |
-
|
52 |
-
if dependencies_ok:
|
53 |
-
# 如果依赖OK,导入所需库
|
54 |
-
try:
|
55 |
-
import torch
|
56 |
-
from transformers import AutoTokenizer, AutoModel, AutoProcessor, Blip2ForConditionalGeneration
|
57 |
-
from PIL import Image
|
58 |
-
print("✅ 所有库导入成功")
|
59 |
-
|
60 |
-
# 在这里放置你的完整应用代码
|
61 |
-
# HF Spaces 环境检测
|
62 |
-
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
63 |
-
print(f"Running on HF Spaces: {IS_SPACES}")
|
64 |
-
|
65 |
-
# 设备配置
|
66 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
67 |
-
print(f"Using device: {device}")
|
68 |
-
|
69 |
-
# 全局变量
|
70 |
-
tokenizer = None
|
71 |
-
model = None
|
72 |
-
processor = None
|
73 |
-
blip_model = None
|
74 |
-
|
75 |
-
def load_models():
|
76 |
-
"""加载模型"""
|
77 |
-
global tokenizer, model, processor, blip_model
|
78 |
|
|
|
|
|
|
|
|
|
|
|
79 |
try:
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
vision_model = "Salesforce/blip2-opt-2.7b"
|
84 |
-
print(f"📷 加载图像模型: {vision_model}")
|
85 |
-
processor = AutoProcessor.from_pretrained(vision_model)
|
86 |
-
|
87 |
-
blip_model = Blip2ForConditionalGeneration.from_pretrained(
|
88 |
-
vision_model,
|
89 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
90 |
-
device_map="auto" if device == "cuda" else None,
|
91 |
-
load_in_8bit=device == "cuda"
|
92 |
-
)
|
93 |
-
|
94 |
-
if device == "cpu":
|
95 |
-
blip_model = blip_model.to("cpu")
|
96 |
-
|
97 |
-
print("✅ 图像模型加载完成")
|
98 |
-
|
99 |
-
# 加载对话模型
|
100 |
-
model_name = "THUDM/chatglm2-6b-int4"
|
101 |
-
print(f"💬 加载对话模型: {model_name}")
|
102 |
-
|
103 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
104 |
-
model_name,
|
105 |
-
trust_remote_code=True
|
106 |
-
)
|
107 |
-
|
108 |
-
model = AutoModel.from_pretrained(
|
109 |
-
model_name,
|
110 |
-
trust_remote_code=True,
|
111 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
112 |
-
low_cpu_mem_usage=True
|
113 |
-
)
|
114 |
|
115 |
if device == "cuda":
|
116 |
-
model = model.
|
117 |
model.eval()
|
118 |
|
119 |
-
print("✅
|
120 |
return True
|
121 |
|
122 |
-
except Exception as
|
123 |
-
print(f"❌
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
try:
|
132 |
-
if not isinstance(image, Image.Image):
|
133 |
-
image = Image.fromarray(image)
|
134 |
-
|
135 |
-
if image.size[0] > 512 or image.size[1] > 512:
|
136 |
-
image.thumbnail((512, 512), Image.Resampling.LANCZOS)
|
137 |
-
|
138 |
-
inputs = processor(image, return_tensors="pt")
|
139 |
-
|
140 |
-
if device == "cuda":
|
141 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
142 |
-
|
143 |
-
with torch.no_grad():
|
144 |
-
generated_ids = blip_model.generate(
|
145 |
-
**inputs,
|
146 |
-
max_new_tokens=30,
|
147 |
-
num_beams=2,
|
148 |
-
do_sample=False
|
149 |
-
)
|
150 |
-
|
151 |
-
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
152 |
-
return caption
|
153 |
-
|
154 |
-
except Exception as e:
|
155 |
-
print(f"图像描述错误: {str(e)}")
|
156 |
-
return f"图像描述生成失败"
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
if model is None or tokenizer is None:
|
198 |
-
chat_history = chat_history or []
|
199 |
-
chat_history.append([user_message, "对话模型未加载,请刷新页面。"])
|
200 |
-
yield chat_history, history or []
|
201 |
-
return
|
202 |
-
|
203 |
-
try:
|
204 |
-
chat_history = chat_history or []
|
205 |
-
history = history or []
|
206 |
-
chat_history.append([user_message, ""])
|
207 |
-
|
208 |
-
for output, new_history in model.stream_chat(
|
209 |
-
tokenizer,
|
210 |
-
user_message,
|
211 |
-
history,
|
212 |
-
max_length=2048,
|
213 |
-
temperature=0.7,
|
214 |
-
top_p=0.8
|
215 |
-
):
|
216 |
-
chat_history[-1][1] = output
|
217 |
-
yield chat_history, new_history
|
218 |
-
|
219 |
-
except Exception as e:
|
220 |
-
print(f"对话错误: {str(e)}")
|
221 |
-
if chat_history:
|
222 |
-
chat_history[-1][1] = "回复生成失败,请重试。"
|
223 |
-
yield chat_history, history or []
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
)
|
245 |
-
clear_btn = gr.Button("🗑️ 清空对话", variant="secondary")
|
246 |
-
|
247 |
-
with gr.Column(scale=2):
|
248 |
-
chatbot = gr.Chatbot(
|
249 |
-
label="🤖 AI 分析师",
|
250 |
-
height=500,
|
251 |
-
show_label=True
|
252 |
-
)
|
253 |
-
|
254 |
-
user_input = gr.Textbox(
|
255 |
-
label="💬 继续提问",
|
256 |
-
placeholder="例如:这幅作品使用了什么绘画技法?创作背景如何?",
|
257 |
-
lines=2
|
258 |
-
)
|
259 |
-
|
260 |
-
# 状态管理
|
261 |
-
state = gr.State([])
|
262 |
-
|
263 |
-
# 事件绑定
|
264 |
-
image_input.upload(
|
265 |
-
fn=on_image_upload,
|
266 |
-
inputs=image_input,
|
267 |
-
outputs=[chatbot, state],
|
268 |
-
show_progress=True
|
269 |
-
)
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
277 |
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
else:
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
|
292 |
except Exception as e:
|
293 |
-
print(f"
|
294 |
-
|
295 |
-
|
296 |
-
gr.HTML(f"""
|
297 |
-
<div style="text-align: center; padding: 50px;">
|
298 |
-
<h2>❌ 库导入失败</h2>
|
299 |
-
<p>错误: {str(e)}</p>
|
300 |
-
<p>正在尝试自动修复...</p>
|
301 |
-
</div>
|
302 |
-
""")
|
303 |
-
error_demo.launch()
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
gr.HTML("""
|
309 |
-
<div style="text-align: center;
|
310 |
-
<
|
311 |
-
<p
|
312 |
-
<p>请尝试以下解决方案:</p>
|
313 |
-
<ol style="text-align: left; display: inline-block;">
|
314 |
-
<li>检查 requirements.txt 文件是否存在</li>
|
315 |
-
<li>在 Settings 中执行 Factory reboot</li>
|
316 |
-
<li>等待 HF Spaces 重新构建环境</li>
|
317 |
-
</ol>
|
318 |
</div>
|
319 |
""")
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import sys
|
3 |
+
import warnings
|
4 |
+
warnings.filterwarnings("ignore")
|
5 |
|
6 |
+
# 基础导入检查
|
7 |
+
try:
|
8 |
+
import gradio as gr
|
9 |
+
from PIL import Image
|
10 |
+
import torch
|
11 |
+
print(f"✅ PyTorch 版本: {torch.__version__}")
|
12 |
+
|
13 |
+
# 检查PyTorch版本
|
14 |
+
torch_version = torch.__version__
|
15 |
+
major, minor = map(int, torch_version.split('.')[:2])
|
16 |
+
if major < 2 or (major == 2 and minor < 6):
|
17 |
+
print(f"⚠️ PyTorch 版本 {torch_version} 可能存在安全问题")
|
18 |
+
|
19 |
+
except ImportError as e:
|
20 |
+
print(f"❌ 基础库导入失败: {e}")
|
21 |
+
with gr.Blocks() as error_demo:
|
22 |
+
gr.HTML("<h2>❌ 基础环境错误</h2>")
|
23 |
+
error_demo.launch()
|
24 |
+
sys.exit(1)
|
25 |
|
26 |
+
# 尝试导入transformers
|
27 |
+
try:
|
28 |
+
from transformers import AutoTokenizer, AutoModel, AutoProcessor, Blip2ForConditionalGeneration
|
29 |
+
print("✅ Transformers 导入成功")
|
30 |
+
except ImportError as e:
|
31 |
+
print(f"❌ Transformers 导入失败: {e}")
|
32 |
+
with gr.Blocks() as error_demo:
|
33 |
+
gr.HTML(f"<h2>❌ Transformers 未安装</h2><p>{str(e)}</p>")
|
34 |
+
error_demo.launch()
|
35 |
+
sys.exit(1)
|
36 |
+
|
37 |
+
# HF Spaces 环境检测
|
38 |
+
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
39 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
+
print(f"环境: {'HF Spaces' if IS_SPACES else 'Local'}, 设备: {device}")
|
41 |
+
|
42 |
+
# 全局变量
|
43 |
+
tokenizer = None
|
44 |
+
model = None
|
45 |
+
processor = None
|
46 |
+
blip_model = None
|
47 |
+
|
48 |
+
def load_models():
|
49 |
+
"""加载模型 - 改进版本"""
|
50 |
+
global tokenizer, model, processor, blip_model
|
51 |
|
|
|
52 |
try:
|
53 |
+
print("🔄 开始加载模型...")
|
54 |
+
|
55 |
+
# 1. 首先加载图像模型(通常更稳定)
|
56 |
+
vision_model = "Salesforce/blip2-opt-2.7b"
|
57 |
+
print(f"📷 加载图像模型: {vision_model}")
|
58 |
+
|
59 |
+
processor = AutoProcessor.from_pretrained(vision_model)
|
60 |
+
blip_model = Blip2ForConditionalGeneration.from_pretrained(
|
61 |
+
vision_model,
|
62 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
63 |
+
device_map="auto" if device == "cuda" else None,
|
64 |
+
load_in_8bit=device == "cuda",
|
65 |
+
trust_remote_code=True
|
66 |
+
)
|
67 |
+
|
68 |
+
if device == "cpu":
|
69 |
+
blip_model = blip_model.to("cpu")
|
70 |
|
71 |
+
print("✅ 图像模型加载完成")
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# 2. 加载对话模型 - 使用更兼容的配置
|
74 |
+
model_name = "THUDM/chatglm2-6b-int4"
|
75 |
+
print(f"💬 加载对话模型: {model_name}")
|
|
|
|
|
|
|
76 |
|
|
|
77 |
try:
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
79 |
+
model_name,
|
80 |
+
trust_remote_code=True,
|
81 |
+
use_fast=False # 使用慢速tokenizer可能更稳定
|
82 |
+
)
|
83 |
+
|
84 |
+
model = AutoModel.from_pretrained(
|
85 |
+
model_name,
|
86 |
+
trust_remote_code=True,
|
87 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
88 |
+
low_cpu_mem_usage=True,
|
89 |
+
device_map="auto" if device == "cuda" else None
|
90 |
+
)
|
91 |
+
|
92 |
+
if device == "cuda":
|
93 |
+
model = model.half().cuda()
|
94 |
+
model.eval()
|
95 |
+
|
96 |
+
print("✅ 对话模型加载完成")
|
97 |
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
except Exception as chat_error:
|
100 |
+
print(f"⚠️ ChatGLM加载失败: {str(chat_error)}")
|
101 |
+
print("🔄 尝试使用备用对话模型...")
|
102 |
+
|
103 |
+
# 备用方案:使用更简单的对话模型
|
104 |
try:
|
105 |
+
backup_model = "microsoft/DialoGPT-medium"
|
106 |
+
tokenizer = AutoTokenizer.from_pretrained(backup_model)
|
107 |
+
model = AutoModel.from_pretrained(backup_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
if device == "cuda":
|
110 |
+
model = model.cuda()
|
111 |
model.eval()
|
112 |
|
113 |
+
print("✅ 备用对话模型加载完成")
|
114 |
return True
|
115 |
|
116 |
+
except Exception as backup_error:
|
117 |
+
print(f"❌ 备用模型也加载失败: {str(backup_error)}")
|
118 |
+
# 至少图像模型可用
|
119 |
+
return "partial"
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
print(f"❌ 模型加载完全失败: {str(e)}")
|
123 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
def describe_image(image):
|
126 |
+
"""图像描述功能"""
|
127 |
+
if blip_model is None or processor is None:
|
128 |
+
return "图像模型未加载"
|
129 |
+
|
130 |
+
try:
|
131 |
+
if not isinstance(image, Image.Image):
|
132 |
+
image = Image.fromarray(image)
|
133 |
+
|
134 |
+
# 调整图像大小
|
135 |
+
if image.size[0] > 512 or image.size[1] > 512:
|
136 |
+
image.thumbnail((512, 512), Image.Resampling.LANCZOS)
|
137 |
+
|
138 |
+
inputs = processor(image, return_tensors="pt")
|
139 |
+
|
140 |
+
if device == "cuda":
|
141 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
generated_ids = blip_model.generate(
|
145 |
+
**inputs,
|
146 |
+
max_new_tokens=50,
|
147 |
+
num_beams=3,
|
148 |
+
do_sample=True,
|
149 |
+
temperature=0.7
|
150 |
+
)
|
151 |
+
|
152 |
+
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
153 |
+
return caption
|
154 |
+
|
155 |
+
except Exception as e:
|
156 |
+
print(f"图像描述错误: {str(e)}")
|
157 |
+
return "图像描述生成失败"
|
158 |
|
159 |
+
def generate_analysis(caption):
|
160 |
+
"""生成艺术品分析"""
|
161 |
+
if model is None or tokenizer is None:
|
162 |
+
# 如果没有对话模型,使用预设的分析模板
|
163 |
+
return f"""
|
164 |
+
基于图像内容: {caption}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
这幅艺术作品展现了独特的视觉表现力。从构图角度来看,作品体现了艺术家对空间布局的精心安排。
|
167 |
+
色彩运用方面,展现了艺术家的色彩敏感度和表现技巧。
|
168 |
+
整体而言,这是一件具有艺术价值的作品,值得进一步欣赏和研究。
|
169 |
|
170 |
+
注:当前使用简化分析模式,如需详细分析请等待对话模型加载完成。
|
171 |
+
""".strip()
|
172 |
+
|
173 |
+
try:
|
174 |
+
prompt = f"这是一幅艺术作品,描述为: {caption}。请用中文对这件艺术作品进行详细的介绍和分析。"
|
175 |
+
|
176 |
+
# 检查模型类型
|
177 |
+
if hasattr(model, 'chat'):
|
178 |
+
# ChatGLM模型
|
179 |
+
response, _ = model.chat(tokenizer, prompt, history=[])
|
180 |
+
else:
|
181 |
+
# 其他模型的通用方法
|
182 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
183 |
+
if device == "cuda":
|
184 |
+
inputs = inputs.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
with torch.no_grad():
|
187 |
+
outputs = model.generate(
|
188 |
+
inputs,
|
189 |
+
max_length=inputs.shape[1] + 200,
|
190 |
+
num_return_sequences=1,
|
191 |
+
temperature=0.7,
|
192 |
+
do_sample=True,
|
193 |
+
pad_token_id=tokenizer.eos_token_id
|
194 |
+
)
|
195 |
|
196 |
+
response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
197 |
+
|
198 |
+
return response
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
print(f"分析生成错误: {str(e)}")
|
202 |
+
return f"基于图像内容 '{caption}' 的分析生成遇到问题,请重试。"
|
203 |
+
|
204 |
+
def on_image_upload(image):
|
205 |
+
"""处理图像上传"""
|
206 |
+
if image is None:
|
207 |
+
return [], []
|
208 |
+
|
209 |
+
try:
|
210 |
+
print("🖼️ 处理图像...")
|
211 |
+
history = []
|
212 |
+
chat_history = []
|
213 |
+
|
214 |
+
# 生成图像描述
|
215 |
+
caption = describe_image(image)
|
216 |
+
print(f"图像描述: {caption}")
|
217 |
+
|
218 |
+
# 生成分析
|
219 |
+
analysis = generate_analysis(caption)
|
220 |
+
chat_history.append([image, analysis])
|
221 |
+
|
222 |
+
return chat_history, history
|
223 |
+
|
224 |
+
except Exception as e:
|
225 |
+
print(f"图像处理错误: {str(e)}")
|
226 |
+
return [[None, "图像处理失败,请重新上传。"]], []
|
227 |
|
228 |
+
def on_user_message(user_message, chat_history, history):
|
229 |
+
"""处理用户消息"""
|
230 |
+
if not user_message or not user_message.strip():
|
231 |
+
yield chat_history or [], history or []
|
232 |
+
return
|
233 |
+
|
234 |
+
chat_history = chat_history or []
|
235 |
+
history = history or []
|
236 |
+
|
237 |
+
if model is None or tokenizer is None:
|
238 |
+
chat_history.append([user_message, "对话功能暂时不可用,仅支持图像分析。"])
|
239 |
+
yield chat_history, history
|
240 |
+
return
|
241 |
+
|
242 |
+
try:
|
243 |
+
chat_history.append([user_message, ""])
|
244 |
+
|
245 |
+
# 检查模型类型并生成回复
|
246 |
+
if hasattr(model, 'stream_chat'):
|
247 |
+
# ChatGLM流式回复
|
248 |
+
for output, new_history in model.stream_chat(tokenizer, user_message, history):
|
249 |
+
chat_history[-1][1] = output
|
250 |
+
yield chat_history, new_history
|
251 |
else:
|
252 |
+
# 其他模型的简单回复
|
253 |
+
response = generate_analysis(user_message) # 复用分析功能
|
254 |
+
chat_history[-1][1] = response
|
255 |
+
yield chat_history, history
|
256 |
|
257 |
except Exception as e:
|
258 |
+
print(f"对话错误: {str(e)}")
|
259 |
+
chat_history[-1][1] = "对话生成失败,请重试。"
|
260 |
+
yield chat_history, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
+
def clear_chat():
|
263 |
+
return [], []
|
264 |
+
|
265 |
+
# 创建界面
|
266 |
+
def create_interface():
|
267 |
+
with gr.Blocks(
|
268 |
+
title="AI艺术品讲解智能体",
|
269 |
+
theme=gr.themes.Soft()
|
270 |
+
) as demo:
|
271 |
gr.HTML("""
|
272 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
273 |
+
<h1>🎨 AI 艺术品讲解智能体</h1>
|
274 |
+
<p>上传艺术品图像,获得专业的艺术分析</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
</div>
|
276 |
""")
|
277 |
+
|
278 |
+
with gr.Row():
|
279 |
+
with gr.Column(scale=1):
|
280 |
+
image_input = gr.Image(
|
281 |
+
label="📤 上传艺术品图像",
|
282 |
+
type="pil",
|
283 |
+
height=350
|
284 |
+
)
|
285 |
+
clear_btn = gr.Button("🗑️ 清空对话", variant="secondary")
|
286 |
+
|
287 |
+
# 模型状态显示
|
288 |
+
status_display = gr.HTML(
|
289 |
+
"<div style='padding:10px; background:#f0f0f0; border-radius:5px;'>"
|
290 |
+
"<b>模型状态:</b> 正在加载..."
|
291 |
+
"</div>"
|
292 |
+
)
|
293 |
+
|
294 |
+
with gr.Column(scale=2):
|
295 |
+
chatbot = gr.Chatbot(
|
296 |
+
label="🤖 AI 分析师",
|
297 |
+
height=500
|
298 |
+
)
|
299 |
+
|
300 |
+
user_input = gr.Textbox(
|
301 |
+
label="💬 继续提问",
|
302 |
+
placeholder="请输入关于艺术作品的问题...",
|
303 |
+
lines=2
|
304 |
+
)
|
305 |
+
|
306 |
+
state = gr.State([])
|
307 |
+
|
308 |
+
# 事件绑定
|
309 |
+
image_input.upload(
|
310 |
+
fn=on_image_upload,
|
311 |
+
inputs=image_input,
|
312 |
+
outputs=[chatbot, state]
|
313 |
+
)
|
314 |
+
|
315 |
+
user_input.submit(
|
316 |
+
fn=on_user_message,
|
317 |
+
inputs=[user_input, chatbot, state],
|
318 |
+
outputs=[chatbot, state]
|
319 |
+
)
|
320 |
+
|
321 |
+
user_input.submit(lambda: "", inputs=[], outputs=[user_input])
|
322 |
+
clear_btn.click(fn=clear_chat, inputs=[], outputs=[chatbot, state])
|
323 |
+
|
324 |
+
return demo, status_display
|
325 |
+
|
326 |
+
# 主程序
|
327 |
+
if __name__ == "__main__":
|
328 |
+
print("🚀 启动 AI 艺术品讲解智能体...")
|
329 |
+
|
330 |
+
demo, status_display = create_interface()
|
331 |
+
|
332 |
+
# 加载模型
|
333 |
+
model_status = load_models()
|
334 |
+
|
335 |
+
if model_status == True:
|
336 |
+
status_msg = "✅ 所有模型加载完成"
|
337 |
+
print(status_msg)
|
338 |
+
elif model_status == "partial":
|
339 |
+
status_msg = "⚠️ 图像模型可用,对话功能受限"
|
340 |
+
print(status_msg)
|
341 |
+
else:
|
342 |
+
status_msg = "❌ 模型加载失败"
|
343 |
+
print(status_msg)
|
344 |
+
|
345 |
+
# 更新状态显示
|
346 |
+
try:
|
347 |
+
demo.launch(
|
348 |
+
share=False,
|
349 |
+
show_error=True,
|
350 |
+
quiet=False
|
351 |
+
)
|
352 |
+
except Exception as e:
|
353 |
+
print(f"启动失败: {str(e)}")
|
354 |
+
with gr.Blocks() as error_demo:
|
355 |
+
gr.HTML(f"<h2>启动失败</h2><p>{str(e)}</p>")
|
356 |
+
error_demo.launch()
|