Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,21 +19,26 @@ nltk.download('stopwords')
|
|
19 |
# 从环境变量中获取 hf_token
|
20 |
hf_token = os.getenv('HF_TOKEN')
|
21 |
|
|
|
22 |
model_id = "BAAI/bge-large-en-v1.5"
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# 加载嵌入向量数据集
|
39 |
faqs_embeddings_dataset = load_dataset('chenglu/hf-blogs-baai-embeddings')
|
@@ -71,7 +76,8 @@ def get_tags_for_local(dataset, local_value):
|
|
71 |
def gradio_query_interface(input_text):
|
72 |
cleaned_text = clean_content(input_text)
|
73 |
no_stopwords_text = remove_stopwords(cleaned_text)
|
74 |
-
new_embedding = query(no_stopwords_text)
|
|
|
75 |
query_embeddings = torch.FloatTensor(new_embedding)
|
76 |
hits = util.semantic_search(query_embeddings, dataset_embeddings, top_k=5)
|
77 |
if all(hit['score'] < 0.6 for hit in hits[0]):
|
|
|
19 |
# 从环境变量中获取 hf_token
|
20 |
hf_token = os.getenv('HF_TOKEN')
|
21 |
|
22 |
+
|
23 |
model_id = "BAAI/bge-large-en-v1.5"
|
24 |
+
feature_extraction_pipeline = pipeline("feature-extraction", model=model_id)
|
25 |
+
|
26 |
+
|
27 |
+
# model_id = "BAAI/bge-large-en-v1.5"
|
28 |
+
# api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
|
29 |
+
# headers = {"Authorization": f"Bearer {hf_token}"}
|
30 |
+
|
31 |
+
# @retry(tries=3, delay=10)
|
32 |
+
# def query(texts):
|
33 |
+
# response = requests.post(api_url, headers=headers, json={"inputs": texts})
|
34 |
+
# if response.status_code == 200:
|
35 |
+
# result = response.json()
|
36 |
+
# if isinstance(result, list):
|
37 |
+
# return result
|
38 |
+
# elif 'error' in result:
|
39 |
+
# raise RuntimeError("Error from Hugging Face API: " + result['error'])
|
40 |
+
# else:
|
41 |
+
# raise RuntimeError("Failed to get response from Hugging Face API, status code: " + str(response.status_code))
|
42 |
|
43 |
# 加载嵌入向量数据集
|
44 |
faqs_embeddings_dataset = load_dataset('chenglu/hf-blogs-baai-embeddings')
|
|
|
76 |
def gradio_query_interface(input_text):
|
77 |
cleaned_text = clean_content(input_text)
|
78 |
no_stopwords_text = remove_stopwords(cleaned_text)
|
79 |
+
# new_embedding = query(no_stopwords_text)
|
80 |
+
new_embedding = feature_extraction_pipeline(input_text)
|
81 |
query_embeddings = torch.FloatTensor(new_embedding)
|
82 |
hits = util.semantic_search(query_embeddings, dataset_embeddings, top_k=5)
|
83 |
if all(hit['score'] < 0.6 for hit in hits[0]):
|