Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,12 +26,22 @@ hf_token = os.getenv('HF_TOKEN')
|
|
26 |
model_id = "BAAI/bge-large-en-v1.5"
|
27 |
feature_extraction_pipeline = pipeline("feature-extraction", model=model_id)
|
28 |
|
29 |
-
|
30 |
# model_id = "BAAI/bge-large-en-v1.5"
|
31 |
# api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
|
32 |
# headers = {"Authorization": f"Bearer {hf_token}"}
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# def query(texts):
|
36 |
# response = requests.post(api_url, headers=headers, json={"inputs": texts})
|
37 |
# if response.status_code == 200:
|
@@ -79,8 +89,8 @@ def get_tags_for_local(dataset, local_value):
|
|
79 |
def gradio_query_interface(input_text):
|
80 |
cleaned_text = clean_content(input_text)
|
81 |
no_stopwords_text = remove_stopwords(cleaned_text)
|
82 |
-
|
83 |
-
new_embedding = feature_extraction_pipeline(input_text)
|
84 |
query_embeddings = torch.FloatTensor(new_embedding)
|
85 |
hits = util.semantic_search(query_embeddings, dataset_embeddings, top_k=5)
|
86 |
if all(hit['score'] < 0.6 for hit in hits[0]):
|
|
|
26 |
model_id = "BAAI/bge-large-en-v1.5"
|
27 |
feature_extraction_pipeline = pipeline("feature-extraction", model=model_id)
|
28 |
|
|
|
29 |
# model_id = "BAAI/bge-large-en-v1.5"
|
30 |
# api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
|
31 |
# headers = {"Authorization": f"Bearer {hf_token}"}
|
32 |
|
33 |
+
@retry(tries=3, delay=10)
|
34 |
+
def query(texts):
|
35 |
+
# 使用特征提取管道获取特征
|
36 |
+
features = feature_extraction_pipeline(texts)
|
37 |
+
|
38 |
+
# 将特征降维成二维张量(如果它们不是)
|
39 |
+
# 假设 features 是一个列表,每个元素是一个句子的特征
|
40 |
+
embeddings = [torch.tensor(f).mean(dim=0) for f in features]
|
41 |
+
embeddings = torch.stack(embeddings)
|
42 |
+
|
43 |
+
return embeddings
|
44 |
+
|
45 |
# def query(texts):
|
46 |
# response = requests.post(api_url, headers=headers, json={"inputs": texts})
|
47 |
# if response.status_code == 200:
|
|
|
89 |
def gradio_query_interface(input_text):
|
90 |
cleaned_text = clean_content(input_text)
|
91 |
no_stopwords_text = remove_stopwords(cleaned_text)
|
92 |
+
new_embedding = query(no_stopwords_text)
|
93 |
+
# new_embedding = feature_extraction_pipeline(input_text)
|
94 |
query_embeddings = torch.FloatTensor(new_embedding)
|
95 |
hits = util.semantic_search(query_embeddings, dataset_embeddings, top_k=5)
|
96 |
if all(hit['score'] < 0.6 for hit in hits[0]):
|