import onnxruntime as ort from transformers import AutoTokenizer import numpy as np import requests import os class LocationFinder: def __init__(self): self.tokenizer = AutoTokenizer.from_pretrained("Mozilla/distilbert-uncased-NER-LoRA") model_url = "https://huggingface.co/Mozilla/distilbert-uncased-NER-LoRA/resolve/main/onnx/model_quantized.onnx" model_dir_path = "models" model_path = f"{model_dir_path}/distilbert-uncased-NER-LoRA" if not os.path.exists(model_dir_path): os.makedirs(model_dir_path) if not os.path.exists(model_path): print("Downloading ONNX model...") response = requests.get(model_url) with open(model_path, "wb") as f: f.write(response.content) print("ONNX model downloaded.") # Load the ONNX model self.ort_session = ort.InferenceSession(model_path) def find_location(self, sequence, verbose=False): inputs = self.tokenizer(sequence, return_tensors="np", # ONNX requires inputs in NumPy format padding="max_length", # Pad to max length truncation=True, # Truncate if the text is too long max_length=64) input_feed = { 'input_ids': inputs['input_ids'].astype(np.int64), 'attention_mask': inputs['attention_mask'].astype(np.int64), } # Run inference with the ONNX model outputs = self.ort_session.run(None, input_feed) logits = outputs[0] # Assuming the model output is logits probabilities = np.exp(logits) / np.sum(np.exp(logits), axis=-1, keepdims=True) predicted_ids = np.argmax(logits, axis=-1) predicted_probs = np.max(probabilities, axis=-1) # Define the threshold for NER probability threshold = 0.6 # Define the label map for city, state, citystate, etc. label_map = { 0: "O", # Outside any named entity 1: "B-PER", # Beginning of a person entity 2: "I-PER", # Inside a person entity 3: "B-ORG", # Beginning of an organization entity 4: "I-ORG", # Inside an organization entity 5: "B-CITY", # Beginning of a city entity 6: "I-CITY", # Inside a city entity 7: "B-STATE", # Beginning of a state entity 8: "I-STATE", # Inside a state entity 9: "B-CITYSTATE", # Beginning of a city_state entity 10: "I-CITYSTATE", # Inside a city_state entity } tokens = self.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0]) # Initialize lists to hold detected entities city_entities = [] state_entities = [] city_state_entities = [] for token, predicted_id, prob in zip(tokens, predicted_ids[0], predicted_probs[0]): if prob > threshold: if token in ["[CLS]", "[SEP]", "[PAD]"]: continue if label_map[predicted_id] in ["B-CITY", "I-CITY"]: # Handle the case of continuation tokens (like "##" in subwords) if token.startswith("##") and city_entities: city_entities[-1] += token[2:] # Remove "##" and append to the last token else: city_entities.append(token) elif label_map[predicted_id] in ["B-STATE", "I-STATE"]: if token.startswith("##") and state_entities: state_entities[-1] += token[2:] else: state_entities.append(token) elif label_map[predicted_id] in ["B-CITYSTATE", "I-CITYSTATE"]: if token.startswith("##") and city_state_entities: city_state_entities[-1] += token[2:] else: city_state_entities.append(token) # Combine city_state entities and split into city and state if necessary if city_state_entities: city_state_str = " ".join(city_state_entities) city_state_split = city_state_str.split(",") # Split on comma to separate city and state city_res = city_state_split[0].strip() if city_state_split[0] else None state_res = city_state_split[1].strip() if len(city_state_split) > 1 else None else: # If no city_state entities, use detected city and state entities separately city_res = " ".join(city_entities).strip() if city_entities else None state_res = " ".join(state_entities).strip() if state_entities else None # Return the detected city and state as separate components return { 'city': city_res, 'state': state_res } if __name__ == '__main__': query = "weather in san francisco, ca" loc_finder = LocationFinder() entities = loc_finder.find_location(query) print(f"query = {query} => {entities}")