chienweichang commited on
Commit
a3d521d
·
verified ·
1 Parent(s): 12c5830

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +111 -0
app.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException, Query, File, UploadFile
2
+ from fastapi.middleware.cors import CORSMiddleware
3
+ from sklearn.neighbors import KDTree
4
+ import pandas as pd
5
+ import numpy as np
6
+ from geopy.distance import geodesic
7
+ import logging
8
+
9
+ app = FastAPI()
10
+
11
+ # 允許所有來源的跨域請求(可以根據需要進行限制)
12
+ app.add_middleware(
13
+ CORSMiddleware,
14
+ allow_origins=["*"], # 可以根據需要限制來源
15
+ allow_credentials=True,
16
+ allow_methods=["*"],
17
+ allow_headers=["*"],
18
+ )
19
+
20
+ # 設置日誌
21
+ logging.basicConfig(level=logging.INFO)
22
+ logger = logging.getLogger(__name__)
23
+
24
+ poi_data = None
25
+ trees = {}
26
+
27
+ # 構建KD-tree(不保存到磁碟)
28
+ def build_kdtrees(poi_data):
29
+ trees = {}
30
+ for poi_type, group in poi_data.groupby('poi_type'):
31
+ coords = np.array(list(group['coordinates']))
32
+ tree = KDTree(coords, leaf_size=2)
33
+ trees[poi_type] = tree
34
+ return trees
35
+
36
+ @app.post("/upload-poi")
37
+ async def upload_poi(file: UploadFile = File(...)):
38
+ global poi_data, trees
39
+ try:
40
+ poi_data = pd.read_csv(file.file)
41
+ poi_data['coordinates'] = list(zip(poi_data.lat, poi_data.lng))
42
+ trees = build_kdtrees(poi_data)
43
+ return {"message": "POI data uploaded and KD-trees built successfully"}
44
+ except Exception as e:
45
+ logger.error(f"An error occurred while processing the uploaded POI data: {e}")
46
+ raise HTTPException(status_code=500, detail="An error occurred while processing the uploaded POI data")
47
+
48
+ @app.get("/poi/nearest")
49
+ def get_nearest_poi(lat: float, lng: float, poi_type: str = Query(...)):
50
+ global poi_data, trees
51
+ if poi_data is None or trees == {}:
52
+ raise HTTPException(status_code=400, detail="POI data not uploaded")
53
+
54
+ coords = np.array([[lat, lng]])
55
+
56
+ if poi_type == "all":
57
+ all_pois = []
58
+
59
+ # 遍歷所有KD-tree並找出最近的POI
60
+ for tree_poi_type, tree in trees.items():
61
+ dist, inds = tree.query(coords, k=10)
62
+ for i, distance in enumerate(dist[0]):
63
+ poi_candidate = poi_data[poi_data['poi_type'] == tree_poi_type].iloc[inds[0][i]]
64
+ candidate_distance = geodesic((lat, lng), (poi_candidate["lat"], poi_candidate["lng"])).meters
65
+ all_pois.append({
66
+ "name": poi_candidate["name"],
67
+ "poi_type": tree_poi_type,
68
+ "distance": round(candidate_distance, 2),
69
+ "latitude": poi_candidate["lat"],
70
+ "longitude": poi_candidate["lng"]
71
+ })
72
+
73
+ # 排序所有POI並取前10個
74
+ all_pois = sorted(all_pois, key=lambda x: x["distance"])[:10]
75
+
76
+ if not all_pois:
77
+ raise HTTPException(status_code=404, detail="No POI found")
78
+
79
+ return all_pois
80
+ else:
81
+ if poi_type not in trees:
82
+ raise HTTPException(status_code=404, detail="Model type not found")
83
+
84
+ tree = trees[poi_type]
85
+ dist, inds = tree.query(coords, k=10)
86
+ nearest_pois = []
87
+
88
+ for i, distance in enumerate(dist[0]):
89
+ nearest_poi = poi_data[poi_data['poi_type'] == poi_type].iloc[inds[0][i]]
90
+ distance_m = geodesic((lat, lng), (nearest_poi["lat"], nearest_poi["lng"])).meters
91
+ nearest_pois.append({
92
+ "name": nearest_poi["name"],
93
+ "poi_type": poi_type,
94
+ "distance": round(distance_m, 2),
95
+ "latitude": nearest_poi["lat"],
96
+ "longitude": nearest_poi["lng"]
97
+ })
98
+
99
+ return nearest_pois
100
+
101
+ @app.post("/clear-kdtrees")
102
+ def clear_kdtrees():
103
+ global poi_data, trees
104
+ poi_data = None
105
+ trees = {}
106
+ return {"message": "KD-trees and POI data cleared successfully"}
107
+
108
+ # 運行應用
109
+ if __name__ == "__main__":
110
+ import uvicorn
111
+ uvicorn.run(app, host="0.0.0.0", port=8000)