File size: 3,067 Bytes
3bbe6c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
import streamlit as st
import altair as alt
# Streamlit app title
st.title("๐ Student Performance Predictor")
# Load dataset
try:
df = pd.read_csv("student_performance_data.csv") # Ensure the file is in the same directory
st.write("### Preview of Dataset")
st.write(df.head()) # Show first few rows
except FileNotFoundError:
st.error("File 'student_performance_data.csv' not found! Please upload the dataset.")
# Ensure dataset contains the required columns
required_columns = ['Study Hours', 'Attendance Rate', 'Assignment Grades', 'Final Exam Score']
if not all(col in df.columns for col in required_columns):
st.error("Dataset must contain the following columns: " + ", ".join(required_columns))
else:
# Prepare data for training
X = df[['Study Hours', 'Attendance Rate', 'Assignment Grades']]
y = df['Final Exam Score']
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train a Linear Regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# Create tabs
tab1, tab2, tab3 = st.tabs(["๐ Data Visualization", "๐ Model Performance", "๐ฏ Prediction"])
# Tab 1: Data Visualization
with tab1:
st.write("### Data Visualization")
# Scatter plots
for col in ['Study Hours', 'Attendance Rate', 'Assignment Grades']:
st.write(f"**{col} vs Final Exam Score**")
chart = alt.Chart(df).mark_circle().encode(
x=col,
y='Final Exam Score',
tooltip=[col, 'Final Exam Score']
).interactive()
st.altair_chart(chart, use_container_width=True)
# Tab 2: Model Performance
with tab2:
st.write("### Model Performance")
st.write(f"โ
Mean Squared Error (MSE): {mse:.2f}")
st.write(f"โ
R-squared Score: {r2:.2f}")
# Tab 3: Prediction
with tab3:
st.write("### Predict Final Exam Score")
study_hours = st.number_input("๐ Study Hours", min_value=0, value=10, step=1)
attendance_rate = st.slider("๐๏ธ Attendance Rate", min_value=0.0, max_value=1.0, step=0.01, value=0.85)
assignment_grades = st.number_input("๐ Average Assignment Grade", min_value=0, max_value=100, value=80, step=1)
if st.button("๐ฎ Predict"):
# Prepare input for prediction
input_data = np.array([[study_hours, attendance_rate, assignment_grades]])
# Make prediction
predicted_score = model.predict(input_data)[0]
st.success(f"๐ฏ Predicted Final Exam Score: {predicted_score:.2f}")
|