diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000000000000000000000000000000000000..c7d9f3332a950355d5a77d85000f05e6f45435ea --- /dev/null +++ b/.gitattributes @@ -0,0 +1,34 @@ +*.7z filter=lfs diff=lfs merge=lfs -text +*.arrow filter=lfs diff=lfs merge=lfs -text +*.bin filter=lfs diff=lfs merge=lfs -text +*.bz2 filter=lfs diff=lfs merge=lfs -text +*.ckpt filter=lfs diff=lfs merge=lfs -text +*.ftz filter=lfs diff=lfs merge=lfs -text +*.gz filter=lfs diff=lfs merge=lfs -text +*.h5 filter=lfs diff=lfs merge=lfs -text +*.joblib filter=lfs diff=lfs merge=lfs -text +*.lfs.* filter=lfs diff=lfs merge=lfs -text +*.mlmodel filter=lfs diff=lfs merge=lfs -text +*.model filter=lfs diff=lfs merge=lfs -text +*.msgpack filter=lfs diff=lfs merge=lfs -text +*.npy filter=lfs diff=lfs merge=lfs -text +*.npz filter=lfs diff=lfs merge=lfs -text +*.onnx filter=lfs diff=lfs merge=lfs -text +*.ot filter=lfs diff=lfs merge=lfs -text +*.parquet filter=lfs diff=lfs merge=lfs -text +*.pb filter=lfs diff=lfs merge=lfs -text +*.pickle filter=lfs diff=lfs merge=lfs -text +*.pkl filter=lfs diff=lfs merge=lfs -text +*.pt filter=lfs diff=lfs merge=lfs -text +*.pth filter=lfs diff=lfs merge=lfs -text +*.rar filter=lfs diff=lfs merge=lfs -text +*.safetensors filter=lfs diff=lfs merge=lfs -text +saved_model/**/* filter=lfs diff=lfs merge=lfs -text +*.tar.* filter=lfs diff=lfs merge=lfs -text +*.tflite filter=lfs diff=lfs merge=lfs -text +*.tgz filter=lfs diff=lfs merge=lfs -text +*.wasm filter=lfs diff=lfs merge=lfs -text +*.xz filter=lfs diff=lfs merge=lfs -text +*.zip filter=lfs diff=lfs merge=lfs -text +*.zst filter=lfs diff=lfs merge=lfs -text +*tfevents* filter=lfs diff=lfs merge=lfs -text diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..c7202d4281303c431d24ad9a0e3a24a0b37517f3 --- /dev/null +++ b/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2021 Jingyi Li + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..ab67b900a617da3367aaa70897581f8d27340338 --- /dev/null +++ b/README.md @@ -0,0 +1,13 @@ +--- +title: Taffy +emoji: 🌍 +colorFrom: indigo +colorTo: purple +sdk: gradio +sdk_version: 3.15.0 +app_file: app.py +pinned: false +duplicated_from: chilge/leo4 +--- + +Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/add_speaker.py b/add_speaker.py new file mode 100644 index 0000000000000000000000000000000000000000..e224f07c892a5fe1837e3cbf1745e0d8992ea283 --- /dev/null +++ b/add_speaker.py @@ -0,0 +1,62 @@ +import os +import argparse +from tqdm import tqdm +from random import shuffle +import json + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list") + parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list") + parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list") + parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir") + args = parser.parse_args() + + previous_config = json.load(open("configs/config.json", "rb")) + + train = [] + val = [] + test = [] + idx = 0 + spk_dict = previous_config["spk"] + spk_id = max([i for i in spk_dict.values()]) + 1 + for speaker in tqdm(os.listdir(args.source_dir)): + if speaker not in spk_dict.keys(): + spk_dict[speaker] = spk_id + spk_id += 1 + wavs = [os.path.join(args.source_dir, speaker, i)for i in os.listdir(os.path.join(args.source_dir, speaker))] + wavs = [i for i in wavs if i.endswith("wav")] + shuffle(wavs) + train += wavs[2:-10] + val += wavs[:2] + test += wavs[-10:] + + assert previous_config["model"]["n_speakers"] > len(spk_dict.keys()) + shuffle(train) + shuffle(val) + shuffle(test) + + print("Writing", args.train_list) + with open(args.train_list, "w") as f: + for fname in tqdm(train): + wavpath = fname + f.write(wavpath + "\n") + + print("Writing", args.val_list) + with open(args.val_list, "w") as f: + for fname in tqdm(val): + wavpath = fname + f.write(wavpath + "\n") + + print("Writing", args.test_list) + with open(args.test_list, "w") as f: + for fname in tqdm(test): + wavpath = fname + f.write(wavpath + "\n") + + previous_config["spk"] = spk_dict + + print("Writing configs/config.json") + with open("configs/config.json", "w") as f: + json.dump(previous_config, f, indent=2) diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..d815b9ee46bdfa5030f055d0c636e52c339085a9 --- /dev/null +++ b/app.py @@ -0,0 +1,66 @@ +import io + +import gradio as gr +import librosa +import numpy as np +import soundfile +import torch +from inference.infer_tool import Svc +import logging + +logging.getLogger('numba').setLevel(logging.WARNING) + +model_name = "logs/32k/G_85000.pth" +config_name = "configs/config.json" + +svc_model = Svc(model_name, config_name) +sid_map = { + "leo": "5s" +} + + +def vc_fn(sid, input_audio, vc_transform): + if input_audio is None: + return "You need to upload an audio", None + sampling_rate, audio = input_audio + # print(audio.shape,sampling_rate) + duration = audio.shape[0] / sampling_rate + if duration > 45: + return "请上传小于45s的音频,需要转换长音频请本地进行转换", None + audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) + if len(audio.shape) > 1: + audio = librosa.to_mono(audio.transpose(1, 0)) + if sampling_rate != 16000: + audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) + print(audio.shape) + out_wav_path = io.BytesIO() + soundfile.write(out_wav_path, audio, 16000, format="wav") + out_wav_path.seek(0) + + sid = sid_map[sid] + out_audio, out_sr = svc_model.infer(sid, vc_transform, out_wav_path) + _audio = out_audio.cpu().numpy() + return "Success", (32000, _audio) + + +app = gr.Blocks() +with app: + with gr.Tabs(): + with gr.TabItem("Basic"): + gr.Markdown(value=""" + + + 3.8W如果要在本地使用该demo,请使用git lfs clone 该仓库,安装requirements.txt后运行app.py即可 + + 项目改写基于 https://huggingface.co/spaces/innnky/nyaru-svc-3.0 + + 本地合成可以删除26、27两行代码以解除合成45s长度限制""") + sid = gr.Dropdown(label="音色", choices=["leo"], value="leo") + vc_input3 = gr.Audio(label="上传音频(长度小于45秒)") + vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0) + vc_submit = gr.Button("转换", variant="primary") + vc_output1 = gr.Textbox(label="Output Message") + vc_output2 = gr.Audio(label="Output Audio") + vc_submit.click(vc_fn, [sid, vc_input3, vc_transform], [vc_output1, vc_output2]) + + app.launch() diff --git a/attentions.py b/attentions.py new file mode 100644 index 0000000000000000000000000000000000000000..4e0b0c1fd48c962e21e1fbe60b23fc574927435c --- /dev/null +++ b/attentions.py @@ -0,0 +1,303 @@ +import copy +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + +import commons +import modules +from modules import LayerNorm + + +class Encoder(nn.Module): + def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.window_size = window_size + + self.drop = nn.Dropout(p_dropout) + self.attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask): + attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.attn_layers[i](x, x, attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class Decoder(nn.Module): + def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + + self.drop = nn.Dropout(p_dropout) + self.self_attn_layers = nn.ModuleList() + self.norm_layers_0 = nn.ModuleList() + self.encdec_attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) + self.norm_layers_0.append(LayerNorm(hidden_channels)) + self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask, h, h_mask): + """ + x: decoder input + h: encoder output + """ + self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) + encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.self_attn_layers[i](x, x, self_attn_mask) + y = self.drop(y) + x = self.norm_layers_0[i](x + y) + + y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class MultiHeadAttention(nn.Module): + def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): + super().__init__() + assert channels % n_heads == 0 + + self.channels = channels + self.out_channels = out_channels + self.n_heads = n_heads + self.p_dropout = p_dropout + self.window_size = window_size + self.heads_share = heads_share + self.block_length = block_length + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + self.attn = None + + self.k_channels = channels // n_heads + self.conv_q = nn.Conv1d(channels, channels, 1) + self.conv_k = nn.Conv1d(channels, channels, 1) + self.conv_v = nn.Conv1d(channels, channels, 1) + self.conv_o = nn.Conv1d(channels, out_channels, 1) + self.drop = nn.Dropout(p_dropout) + + if window_size is not None: + n_heads_rel = 1 if heads_share else n_heads + rel_stddev = self.k_channels**-0.5 + self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) + self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) + + nn.init.xavier_uniform_(self.conv_q.weight) + nn.init.xavier_uniform_(self.conv_k.weight) + nn.init.xavier_uniform_(self.conv_v.weight) + if proximal_init: + with torch.no_grad(): + self.conv_k.weight.copy_(self.conv_q.weight) + self.conv_k.bias.copy_(self.conv_q.bias) + + def forward(self, x, c, attn_mask=None): + q = self.conv_q(x) + k = self.conv_k(c) + v = self.conv_v(c) + + x, self.attn = self.attention(q, k, v, mask=attn_mask) + + x = self.conv_o(x) + return x + + def attention(self, query, key, value, mask=None): + # reshape [b, d, t] -> [b, n_h, t, d_k] + b, d, t_s, t_t = (*key.size(), query.size(2)) + query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) + key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + + scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) + if self.window_size is not None: + assert t_s == t_t, "Relative attention is only available for self-attention." + key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) + rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) + scores_local = self._relative_position_to_absolute_position(rel_logits) + scores = scores + scores_local + if self.proximal_bias: + assert t_s == t_t, "Proximal bias is only available for self-attention." + scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) + if mask is not None: + scores = scores.masked_fill(mask == 0, -1e4) + if self.block_length is not None: + assert t_s == t_t, "Local attention is only available for self-attention." + block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) + scores = scores.masked_fill(block_mask == 0, -1e4) + p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] + p_attn = self.drop(p_attn) + output = torch.matmul(p_attn, value) + if self.window_size is not None: + relative_weights = self._absolute_position_to_relative_position(p_attn) + value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) + output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) + output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] + return output, p_attn + + def _matmul_with_relative_values(self, x, y): + """ + x: [b, h, l, m] + y: [h or 1, m, d] + ret: [b, h, l, d] + """ + ret = torch.matmul(x, y.unsqueeze(0)) + return ret + + def _matmul_with_relative_keys(self, x, y): + """ + x: [b, h, l, d] + y: [h or 1, m, d] + ret: [b, h, l, m] + """ + ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) + return ret + + def _get_relative_embeddings(self, relative_embeddings, length): + max_relative_position = 2 * self.window_size + 1 + # Pad first before slice to avoid using cond ops. + pad_length = max(length - (self.window_size + 1), 0) + slice_start_position = max((self.window_size + 1) - length, 0) + slice_end_position = slice_start_position + 2 * length - 1 + if pad_length > 0: + padded_relative_embeddings = F.pad( + relative_embeddings, + commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) + else: + padded_relative_embeddings = relative_embeddings + used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] + return used_relative_embeddings + + def _relative_position_to_absolute_position(self, x): + """ + x: [b, h, l, 2*l-1] + ret: [b, h, l, l] + """ + batch, heads, length, _ = x.size() + # Concat columns of pad to shift from relative to absolute indexing. + x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) + + # Concat extra elements so to add up to shape (len+1, 2*len-1). + x_flat = x.view([batch, heads, length * 2 * length]) + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) + + # Reshape and slice out the padded elements. + x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] + return x_final + + def _absolute_position_to_relative_position(self, x): + """ + x: [b, h, l, l] + ret: [b, h, l, 2*l-1] + """ + batch, heads, length, _ = x.size() + # padd along column + x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) + x_flat = x.view([batch, heads, length**2 + length*(length -1)]) + # add 0's in the beginning that will skew the elements after reshape + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) + x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] + return x_final + + def _attention_bias_proximal(self, length): + """Bias for self-attention to encourage attention to close positions. + Args: + length: an integer scalar. + Returns: + a Tensor with shape [1, 1, length, length] + """ + r = torch.arange(length, dtype=torch.float32) + diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) + return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) + + +class FFN(nn.Module): + def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.activation = activation + self.causal = causal + + if causal: + self.padding = self._causal_padding + else: + self.padding = self._same_padding + + self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) + self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) + self.drop = nn.Dropout(p_dropout) + + def forward(self, x, x_mask): + x = self.conv_1(self.padding(x * x_mask)) + if self.activation == "gelu": + x = x * torch.sigmoid(1.702 * x) + else: + x = torch.relu(x) + x = self.drop(x) + x = self.conv_2(self.padding(x * x_mask)) + return x * x_mask + + def _causal_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = self.kernel_size - 1 + pad_r = 0 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x + + def _same_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = (self.kernel_size - 1) // 2 + pad_r = self.kernel_size // 2 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x diff --git a/commons.py b/commons.py new file mode 100644 index 0000000000000000000000000000000000000000..074888006392e956ce204d8368362dbb2cd4e304 --- /dev/null +++ b/commons.py @@ -0,0 +1,188 @@ +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + +def slice_pitch_segments(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, idx_str:idx_end] + return ret + +def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + 1 + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size) + return ret, ret_pitch, ids_str + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size*dilation - dilation)/2) + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def intersperse(lst, item): + result = [item] * (len(lst) * 2 + 1) + result[1::2] = lst + return result + + +def kl_divergence(m_p, logs_p, m_q, logs_q): + """KL(P||Q)""" + kl = (logs_q - logs_p) - 0.5 + kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q) + return kl + + +def rand_gumbel(shape): + """Sample from the Gumbel distribution, protect from overflows.""" + uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 + return -torch.log(-torch.log(uniform_samples)) + + +def rand_gumbel_like(x): + g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) + return g + + +def slice_segments(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, :, idx_str:idx_end] + return ret + + +def rand_slice_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + 1 + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def rand_spec_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def get_timing_signal_1d( + length, channels, min_timescale=1.0, max_timescale=1.0e4): + position = torch.arange(length, dtype=torch.float) + num_timescales = channels // 2 + log_timescale_increment = ( + math.log(float(max_timescale) / float(min_timescale)) / + (num_timescales - 1)) + inv_timescales = min_timescale * torch.exp( + torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment) + scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) + signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) + signal = F.pad(signal, [0, 0, 0, channels % 2]) + signal = signal.view(1, channels, length) + return signal + + +def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return x + signal.to(dtype=x.dtype, device=x.device) + + +def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) + + +def subsequent_mask(length): + mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) + return mask + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def shift_1d(x): + x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] + return x + + +def sequence_mask(length, max_length=None): + if max_length is None: + max_length = length.max() + x = torch.arange(max_length, dtype=length.dtype, device=length.device) + return x.unsqueeze(0) < length.unsqueeze(1) + + +def generate_path(duration, mask): + """ + duration: [b, 1, t_x] + mask: [b, 1, t_y, t_x] + """ + device = duration.device + + b, _, t_y, t_x = mask.shape + cum_duration = torch.cumsum(duration, -1) + + cum_duration_flat = cum_duration.view(b * t_x) + path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) + path = path.view(b, t_x, t_y) + path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] + path = path.unsqueeze(1).transpose(2,3) * mask + return path + + +def clip_grad_value_(parameters, clip_value, norm_type=2): + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = list(filter(lambda p: p.grad is not None, parameters)) + norm_type = float(norm_type) + if clip_value is not None: + clip_value = float(clip_value) + + total_norm = 0 + for p in parameters: + param_norm = p.grad.data.norm(norm_type) + total_norm += param_norm.item() ** norm_type + if clip_value is not None: + p.grad.data.clamp_(min=-clip_value, max=clip_value) + total_norm = total_norm ** (1. / norm_type) + return total_norm diff --git a/configs/config.json b/configs/config.json new file mode 100644 index 0000000000000000000000000000000000000000..05505f7385e5b38616b1ee66cc55a28aa2cd92ad --- /dev/null +++ b/configs/config.json @@ -0,0 +1,90 @@ +{ + "train": { + "log_interval": 200, + "eval_interval": 1000, + "seed": 1234, + "epochs": 10000, + "learning_rate": 0.0001, + "betas": [ + 0.8, + 0.99 + ], + "eps": 1e-09, + "batch_size": 12, + "fp16_run": true, + "lr_decay": 0.999875, + "segment_size": 17920, + "init_lr_ratio": 1, + "warmup_epochs": 0, + "c_mel": 45, + "c_kl": 1.0, + "use_sr": true, + "max_speclen": 384, + "port": "8001" + }, + "data": { + "training_files": "filelists/train.txt", + "validation_files": "filelists/val.txt", + "max_wav_value": 32768.0, + "sampling_rate": 32000, + "filter_length": 1280, + "hop_length": 320, + "win_length": 1280, + "n_mel_channels": 80, + "mel_fmin": 0.0, + "mel_fmax": null + }, + "model": { + "inter_channels": 192, + "hidden_channels": 192, + "filter_channels": 768, + "n_heads": 2, + "n_layers": 6, + "kernel_size": 3, + "p_dropout": 0.1, + "resblock": "1", + "resblock_kernel_sizes": [ + 3, + 7, + 11 + ], + "resblock_dilation_sizes": [ + [ + 1, + 3, + 5 + ], + [ + 1, + 3, + 5 + ], + [ + 1, + 3, + 5 + ] + ], + "upsample_rates": [ + 10, + 8, + 2, + 2 + ], + "upsample_initial_channel": 512, + "upsample_kernel_sizes": [ + 16, + 16, + 4, + 4 + ], + "n_layers_q": 3, + "use_spectral_norm": false, + "gin_channels": 256, + "ssl_dim": 256, + "n_speakers": 1 + }, + "spk": { + "5s": 0 + } +} \ No newline at end of file diff --git a/data_utils.py b/data_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..9dfba4a9dfbfbd2b6ed5e771a5ffee4f70419ba3 --- /dev/null +++ b/data_utils.py @@ -0,0 +1,152 @@ +import time +import os +import random +import numpy as np +import torch +import torch.utils.data + +import commons +from mel_processing import spectrogram_torch, spec_to_mel_torch +from utils import load_wav_to_torch, load_filepaths_and_text, transform + +# import h5py + + +"""Multi speaker version""" + + +class TextAudioSpeakerLoader(torch.utils.data.Dataset): + """ + 1) loads audio, speaker_id, text pairs + 2) normalizes text and converts them to sequences of integers + 3) computes spectrograms from audio files. + """ + + def __init__(self, audiopaths, hparams): + self.audiopaths = load_filepaths_and_text(audiopaths) + self.max_wav_value = hparams.data.max_wav_value + self.sampling_rate = hparams.data.sampling_rate + self.filter_length = hparams.data.filter_length + self.hop_length = hparams.data.hop_length + self.win_length = hparams.data.win_length + self.sampling_rate = hparams.data.sampling_rate + self.use_sr = hparams.train.use_sr + self.spec_len = hparams.train.max_speclen + self.spk_map = hparams.spk + + random.seed(1234) + random.shuffle(self.audiopaths) + + def get_audio(self, filename): + audio, sampling_rate = load_wav_to_torch(filename) + if sampling_rate != self.sampling_rate: + raise ValueError("{} SR doesn't match target {} SR".format( + sampling_rate, self.sampling_rate)) + audio_norm = audio / self.max_wav_value + audio_norm = audio_norm.unsqueeze(0) + spec_filename = filename.replace(".wav", ".spec.pt") + if os.path.exists(spec_filename): + spec = torch.load(spec_filename) + else: + spec = spectrogram_torch(audio_norm, self.filter_length, + self.sampling_rate, self.hop_length, self.win_length, + center=False) + spec = torch.squeeze(spec, 0) + torch.save(spec, spec_filename) + + spk = filename.split(os.sep)[-2] + spk = torch.LongTensor([self.spk_map[spk]]) + + c = torch.load(filename + ".soft.pt").squeeze(0) + c = torch.repeat_interleave(c, repeats=2, dim=1) + + f0 = np.load(filename + ".f0.npy") + f0 = torch.FloatTensor(f0) + lmin = min(c.size(-1), spec.size(-1), f0.shape[0]) + assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename) + assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) + assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) + spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin] + audio_norm = audio_norm[:, :lmin * self.hop_length] + _spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0 + while spec.size(-1) < self.spec_len: + spec = torch.cat((spec, _spec), -1) + c = torch.cat((c, _c), -1) + f0 = torch.cat((f0, _f0), -1) + audio_norm = torch.cat((audio_norm, _audio_norm), -1) + start = random.randint(0, spec.size(-1) - self.spec_len) + end = start + self.spec_len + spec = spec[:, start:end] + c = c[:, start:end] + f0 = f0[start:end] + audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length] + + return c, f0, spec, audio_norm, spk + + def __getitem__(self, index): + return self.get_audio(self.audiopaths[index][0]) + + def __len__(self): + return len(self.audiopaths) + + +class EvalDataLoader(torch.utils.data.Dataset): + """ + 1) loads audio, speaker_id, text pairs + 2) normalizes text and converts them to sequences of integers + 3) computes spectrograms from audio files. + """ + + def __init__(self, audiopaths, hparams): + self.audiopaths = load_filepaths_and_text(audiopaths) + self.max_wav_value = hparams.data.max_wav_value + self.sampling_rate = hparams.data.sampling_rate + self.filter_length = hparams.data.filter_length + self.hop_length = hparams.data.hop_length + self.win_length = hparams.data.win_length + self.sampling_rate = hparams.data.sampling_rate + self.use_sr = hparams.train.use_sr + self.audiopaths = self.audiopaths[:5] + self.spk_map = hparams.spk + + + def get_audio(self, filename): + audio, sampling_rate = load_wav_to_torch(filename) + if sampling_rate != self.sampling_rate: + raise ValueError("{} SR doesn't match target {} SR".format( + sampling_rate, self.sampling_rate)) + audio_norm = audio / self.max_wav_value + audio_norm = audio_norm.unsqueeze(0) + spec_filename = filename.replace(".wav", ".spec.pt") + if os.path.exists(spec_filename): + spec = torch.load(spec_filename) + else: + spec = spectrogram_torch(audio_norm, self.filter_length, + self.sampling_rate, self.hop_length, self.win_length, + center=False) + spec = torch.squeeze(spec, 0) + torch.save(spec, spec_filename) + + spk = filename.split(os.sep)[-2] + spk = torch.LongTensor([self.spk_map[spk]]) + + c = torch.load(filename + ".soft.pt").squeeze(0) + + c = torch.repeat_interleave(c, repeats=2, dim=1) + + f0 = np.load(filename + ".f0.npy") + f0 = torch.FloatTensor(f0) + lmin = min(c.size(-1), spec.size(-1), f0.shape[0]) + assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) + assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape) + spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin] + audio_norm = audio_norm[:, :lmin * self.hop_length] + + return c, f0, spec, audio_norm, spk + + def __getitem__(self, index): + return self.get_audio(self.audiopaths[index][0]) + + def __len__(self): + return len(self.audiopaths) + diff --git a/filelists/test.txt b/filelists/test.txt new file mode 100644 index 0000000000000000000000000000000000000000..5246bc469b0ce3bfd3b015b087d158c6f6f1d6de --- /dev/null +++ b/filelists/test.txt @@ -0,0 +1,7 @@ +./dataset/32k/yunhao/001829.wav +./dataset/32k/yunhao/001827.wav +./dataset/32k/jishuang/000104.wav +./dataset/32k/nen/kne110_005.wav +./dataset/32k/nen/kne110_004.wav +./dataset/32k/jishuang/000223.wav +./dataset/32k/yunhao/001828.wav diff --git a/filelists/train.txt b/filelists/train.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/filelists/val.txt b/filelists/val.txt new file mode 100644 index 0000000000000000000000000000000000000000..40d9d4749240fc003cd62b16ad2f45ea5309c832 --- /dev/null +++ b/filelists/val.txt @@ -0,0 +1,6 @@ +./dataset/32k/nen/kne110_005.wav +./dataset/32k/yunhao/001827.wav +./dataset/32k/jishuang/000104.wav +./dataset/32k/jishuang/000223.wav +./dataset/32k/nen/kne110_004.wav +./dataset/32k/yunhao/001828.wav diff --git a/flask_api.py b/flask_api.py new file mode 100644 index 0000000000000000000000000000000000000000..8cc236a1c34c9ddeddea99bcea13024fb0ccc90b --- /dev/null +++ b/flask_api.py @@ -0,0 +1,56 @@ +import io +import logging + +import soundfile +import torch +import torchaudio +from flask import Flask, request, send_file +from flask_cors import CORS + +from inference.infer_tool import Svc, RealTimeVC + +app = Flask(__name__) + +CORS(app) + +logging.getLogger('numba').setLevel(logging.WARNING) + + +@app.route("/voiceChangeModel", methods=["POST"]) +def voice_change_model(): + request_form = request.form + wave_file = request.files.get("sample", None) + # 变调信息 + f_pitch_change = float(request_form.get("fPitchChange", 0)) + # DAW所需的采样率 + daw_sample = int(float(request_form.get("sampleRate", 0))) + speaker_id = int(float(request_form.get("sSpeakId", 0))) + # http获得wav文件并转换 + input_wav_path = io.BytesIO(wave_file.read()) + + # 模型推理 + if raw_infer: + out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path) + tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample) + else: + out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path) + tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample) + # 返回音频 + out_wav_path = io.BytesIO() + soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav") + out_wav_path.seek(0) + return send_file(out_wav_path, download_name="temp.wav", as_attachment=True) + + +if __name__ == '__main__': + # 启用则为直接切片合成,False为交叉淡化方式 + # vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音 + # 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些 + raw_infer = True + # 每个模型和config是唯一对应的 + model_name = "logs/32k/G_174000-Copy1.pth" + config_name = "configs/config.json" + svc_model = Svc(model_name, config_name) + svc = RealTimeVC() + # 此处与vst插件对应,不建议更改 + app.run(port=6842, host="0.0.0.0", debug=False, threaded=False) diff --git a/hubert/__init__.py b/hubert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/hubert/hubert-soft-0d54a1f4.pt b/hubert/hubert-soft-0d54a1f4.pt new file mode 100644 index 0000000000000000000000000000000000000000..5ccd36b11dc124c97a0b73fa5f39eed8d1a6f27a --- /dev/null +++ b/hubert/hubert-soft-0d54a1f4.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e82e7d079df05fe3aa535f6f7d42d309bdae1d2a53324e2b2386c56721f4f649 +size 378435957 diff --git a/hubert/hubert_model.py b/hubert/hubert_model.py new file mode 100644 index 0000000000000000000000000000000000000000..7fb642d89b07ca60792debab18e3454f52d8f357 --- /dev/null +++ b/hubert/hubert_model.py @@ -0,0 +1,222 @@ +import copy +import random +from typing import Optional, Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as t_func +from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present + + +class Hubert(nn.Module): + def __init__(self, num_label_embeddings: int = 100, mask: bool = True): + super().__init__() + self._mask = mask + self.feature_extractor = FeatureExtractor() + self.feature_projection = FeatureProjection() + self.positional_embedding = PositionalConvEmbedding() + self.norm = nn.LayerNorm(768) + self.dropout = nn.Dropout(0.1) + self.encoder = TransformerEncoder( + nn.TransformerEncoderLayer( + 768, 12, 3072, activation="gelu", batch_first=True + ), + 12, + ) + self.proj = nn.Linear(768, 256) + + self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_()) + self.label_embedding = nn.Embedding(num_label_embeddings, 256) + + def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + mask = None + if self.training and self._mask: + mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2) + x[mask] = self.masked_spec_embed.to(x.dtype) + return x, mask + + def encode( + self, x: torch.Tensor, layer: Optional[int] = None + ) -> Tuple[torch.Tensor, torch.Tensor]: + x = self.feature_extractor(x) + x = self.feature_projection(x.transpose(1, 2)) + x, mask = self.mask(x) + x = x + self.positional_embedding(x) + x = self.dropout(self.norm(x)) + x = self.encoder(x, output_layer=layer) + return x, mask + + def logits(self, x: torch.Tensor) -> torch.Tensor: + logits = torch.cosine_similarity( + x.unsqueeze(2), + self.label_embedding.weight.unsqueeze(0).unsqueeze(0), + dim=-1, + ) + return logits / 0.1 + + def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + x, mask = self.encode(x) + x = self.proj(x) + logits = self.logits(x) + return logits, mask + + +class HubertSoft(Hubert): + def __init__(self): + super().__init__() + + @torch.inference_mode() + def units(self, wav: torch.Tensor) -> torch.Tensor: + wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2)) + x, _ = self.encode(wav) + return self.proj(x) + + +class FeatureExtractor(nn.Module): + def __init__(self): + super().__init__() + self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False) + self.norm0 = nn.GroupNorm(512, 512) + self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False) + self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False) + self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False) + self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False) + self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False) + self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = t_func.gelu(self.norm0(self.conv0(x))) + x = t_func.gelu(self.conv1(x)) + x = t_func.gelu(self.conv2(x)) + x = t_func.gelu(self.conv3(x)) + x = t_func.gelu(self.conv4(x)) + x = t_func.gelu(self.conv5(x)) + x = t_func.gelu(self.conv6(x)) + return x + + +class FeatureProjection(nn.Module): + def __init__(self): + super().__init__() + self.norm = nn.LayerNorm(512) + self.projection = nn.Linear(512, 768) + self.dropout = nn.Dropout(0.1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.norm(x) + x = self.projection(x) + x = self.dropout(x) + return x + + +class PositionalConvEmbedding(nn.Module): + def __init__(self): + super().__init__() + self.conv = nn.Conv1d( + 768, + 768, + kernel_size=128, + padding=128 // 2, + groups=16, + ) + self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.conv(x.transpose(1, 2)) + x = t_func.gelu(x[:, :, :-1]) + return x.transpose(1, 2) + + +class TransformerEncoder(nn.Module): + def __init__( + self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int + ) -> None: + super(TransformerEncoder, self).__init__() + self.layers = nn.ModuleList( + [copy.deepcopy(encoder_layer) for _ in range(num_layers)] + ) + self.num_layers = num_layers + + def forward( + self, + src: torch.Tensor, + mask: torch.Tensor = None, + src_key_padding_mask: torch.Tensor = None, + output_layer: Optional[int] = None, + ) -> torch.Tensor: + output = src + for layer in self.layers[:output_layer]: + output = layer( + output, src_mask=mask, src_key_padding_mask=src_key_padding_mask + ) + return output + + +def _compute_mask( + shape: Tuple[int, int], + mask_prob: float, + mask_length: int, + device: torch.device, + min_masks: int = 0, +) -> torch.Tensor: + batch_size, sequence_length = shape + + if mask_length < 1: + raise ValueError("`mask_length` has to be bigger than 0.") + + if mask_length > sequence_length: + raise ValueError( + f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`" + ) + + # compute number of masked spans in batch + num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random()) + num_masked_spans = max(num_masked_spans, min_masks) + + # make sure num masked indices <= sequence_length + if num_masked_spans * mask_length > sequence_length: + num_masked_spans = sequence_length // mask_length + + # SpecAugment mask to fill + mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool) + + # uniform distribution to sample from, make sure that offset samples are < sequence_length + uniform_dist = torch.ones( + (batch_size, sequence_length - (mask_length - 1)), device=device + ) + + # get random indices to mask + mask_indices = torch.multinomial(uniform_dist, num_masked_spans) + + # expand masked indices to masked spans + mask_indices = ( + mask_indices.unsqueeze(dim=-1) + .expand((batch_size, num_masked_spans, mask_length)) + .reshape(batch_size, num_masked_spans * mask_length) + ) + offsets = ( + torch.arange(mask_length, device=device)[None, None, :] + .expand((batch_size, num_masked_spans, mask_length)) + .reshape(batch_size, num_masked_spans * mask_length) + ) + mask_idxs = mask_indices + offsets + + # scatter indices to mask + mask = mask.scatter(1, mask_idxs, True) + + return mask + + +def hubert_soft( + path: str, +) -> HubertSoft: + r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`. + Args: + path (str): path of a pretrained model + """ + hubert = HubertSoft() + checkpoint = torch.load(path) + consume_prefix_in_state_dict_if_present(checkpoint, "module.") + hubert.load_state_dict(checkpoint) + hubert.eval() + return hubert diff --git a/hubert/put_hubert_ckpt_here b/hubert/put_hubert_ckpt_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/inference/__init__.py b/inference/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/inference/chunks_temp.json b/inference/chunks_temp.json new file mode 100644 index 0000000000000000000000000000000000000000..0684eb6d68fca93c9e30cc9fc9b1d6c1105f93f1 --- /dev/null +++ b/inference/chunks_temp.json @@ -0,0 +1 @@ +{"info": "temp_dict", "cd65e3ce661250b7aea16ea398d13925": {"chunks": {"0": {"slice": false, "split_time": "0,556685"}}, "time": 1670798600}, "2959d9aae0e4172f27b54e452bf3b77c": {"chunks": {"0": {"slice": false, "split_time": "0,298726"}, "1": {"slice": true, "split_time": "298726,303854"}, "2": {"slice": false, "split_time": "303854,631469"}}, "time": 1670427122}, "c617b9cc74eeed7940d9e6f47c0c5bb6": {"chunks": {"0": {"slice": true, "split_time": "0,294190"}, "1": {"slice": false, "split_time": "294190,2014632"}, "2": {"slice": true, "split_time": "2014632,2021279"}, "3": {"slice": false, "split_time": "2021279,2800739"}, "4": {"slice": true, "split_time": "2800739,2816932"}, "5": {"slice": false, "split_time": "2816932,4554807"}, "6": {"slice": true, "split_time": "4554807,4572392"}, "7": {"slice": false, "split_time": "4572392,5337074"}, "8": {"slice": true, "split_time": "5337074,6197945"}, "9": {"slice": false, "split_time": "6197945,7043120"}, "10": {"slice": true, "split_time": "7043120,7195239"}}, "time": 1670428761}, "e7bba7ef02e7bba00520d7171a529b02": {"chunks": {"0": {"slice": false, "split_time": "0,435739"}}, "time": 1670472899}, "3517fa06b9fe06618393107005ce145f": {"chunks": {"0": {"slice": false, "split_time": "0,245893"}}, "time": 1670475779}, "2250dc696d4c0025d766e5234912e446": {"chunks": {"0": {"slice": true, "split_time": "0,223394"}, "1": {"slice": false, "split_time": "223394,546311"}, "2": {"slice": true, "split_time": "546311,572526"}, "3": {"slice": false, "split_time": "572526,1004349"}, "4": {"slice": true, "split_time": "1004349,1090615"}, "5": {"slice": false, "split_time": "1090615,1415280"}, "6": {"slice": true, "split_time": "1415280,1418069"}, "7": {"slice": false, "split_time": "1418069,1659131"}, "8": {"slice": true, "split_time": "1659131,1661453"}, "9": {"slice": false, "split_time": "1661453,1888827"}, "10": {"slice": true, "split_time": "1888827,1960051"}, "11": {"slice": false, "split_time": "1960051,2230836"}, "12": {"slice": true, "split_time": "2230836,2306854"}, "13": {"slice": false, "split_time": "2306854,2583422"}, "14": {"slice": true, "split_time": "2583422,2649271"}, "15": {"slice": false, "split_time": "2649271,2929916"}, "16": {"slice": true, "split_time": "2929916,2977116"}, "17": {"slice": false, "split_time": "2977116,3431901"}, "18": {"slice": true, "split_time": "3431901,3504853"}}, "time": 1670476034}, "7030c457119b4710d0091ce67f58a125": {"chunks": {"0": {"slice": true, "split_time": "0,9640"}, "1": {"slice": false, "split_time": "9640,209081"}, "2": {"slice": true, "split_time": "209081,210126"}, "3": {"slice": false, "split_time": "210126,504084"}, "4": {"slice": true, "split_time": "504084,505625"}, "5": {"slice": false, "split_time": "505625,768061"}, "6": {"slice": true, "split_time": "768061,795550"}}, "time": 1670627906}, "7d9274b960035df4dacfdc95b492cf7c": {"chunks": {"0": {"slice": false, "split_time": "0,337196"}, "1": {"slice": true, "split_time": "337196,347378"}, "2": {"slice": false, "split_time": "347378,1022501"}, "3": {"slice": true, "split_time": "1022501,1034918"}, "4": {"slice": false, "split_time": "1034918,2070080"}}, "time": 1670487808}, "0f3c73ebbda2101325eb6453551514af": {"chunks": {"0": {"slice": true, "split_time": "0,475043"}, "1": {"slice": false, "split_time": "475043,1288182"}, "2": {"slice": true, "split_time": "1288182,1303033"}, "3": {"slice": false, "split_time": "1303033,2101474"}, "4": {"slice": true, "split_time": "2101474,2106811"}, "5": {"slice": false, "split_time": "2106811,3055223"}, "6": {"slice": true, "split_time": "3055223,3516745"}, "7": {"slice": false, "split_time": "3516745,4348812"}, "8": {"slice": true, "split_time": "4348812,4354034"}, "9": {"slice": false, "split_time": "4354034,4756434"}, "10": {"slice": true, "split_time": "4756434,4757558"}, "11": {"slice": false, "split_time": "4757558,7830503"}, "12": {"slice": true, "split_time": "7830503,7839320"}, "13": {"slice": false, "split_time": "7839320,8051918"}, "14": {"slice": true, "split_time": "8051918,8184993"}}, "time": 1670713815}, "c544d7842bb2fa325a0aa9a21b7f9503": {"chunks": {"0": {"slice": true, "split_time": "0,134375"}, "1": {"slice": false, "split_time": "134375,947514"}, "2": {"slice": true, "split_time": "947514,962365"}, "3": {"slice": false, "split_time": "962365,1760806"}, "4": {"slice": true, "split_time": "1760806,1766143"}, "5": {"slice": false, "split_time": "1766143,2714555"}, "6": {"slice": true, "split_time": "2714555,2888274"}}, "time": 1670586817}, "b663f58fd3b1da710febfa0a45f447f7": {"chunks": {"0": {"slice": false, "split_time": "0,333120"}}, "time": 1670628277}, "dccf823870a0c278d53690469e26ce5e": {"chunks": {"0": {"slice": false, "split_time": "0,174322"}, "1": {"slice": true, "split_time": "174322,178984"}, "2": {"slice": false, "split_time": "178984,592293"}}, "time": 1670750467}, "1ea41e9dc88c7c28ac2ac7fc637f929f": {"chunks": {"0": {"slice": false, "split_time": "0,177025"}, "1": {"slice": true, "split_time": "177025,180753"}, "2": {"slice": false, "split_time": "180753,307984"}, "3": {"slice": true, "split_time": "307984,309679"}, "4": {"slice": false, "split_time": "309679,602116"}, "5": {"slice": true, "split_time": "602116,604118"}, "6": {"slice": false, "split_time": "604118,608816"}}, "time": 1670750647}, "70bfe94e1cfe1b9eb8e575d15a7e8bb2": {"chunks": {"0": {"slice": false, "split_time": "0,240584"}}, "time": 1670751256}, "a4296c8efc33bd7857cb3b2f6f9b912b": {"chunks": {"0": {"slice": false, "split_time": "0,314870"}}, "time": 1670751262}, "4f0e18a681b221edfb66f601cb0257dc": {"chunks": {"0": {"slice": true, "split_time": "0,13985"}, "1": {"slice": false, "split_time": "13985,114094"}, "2": {"slice": true, "split_time": "114094,117459"}, "3": {"slice": false, "split_time": "117459,326432"}, "4": {"slice": true, "split_time": "326432,328157"}, "5": {"slice": false, "split_time": "328157,462942"}, "6": {"slice": true, "split_time": "462942,480279"}, "7": {"slice": false, "split_time": "480279,615909"}, "8": {"slice": true, "split_time": "615909,620472"}}, "time": 1670751397}} \ No newline at end of file diff --git a/inference/infer_tool.py b/inference/infer_tool.py new file mode 100644 index 0000000000000000000000000000000000000000..3491348b6f91d47133cc450a9df21e97f5f74c48 --- /dev/null +++ b/inference/infer_tool.py @@ -0,0 +1,326 @@ +import hashlib +import json +import logging +import os +import time +from pathlib import Path + +import librosa +import maad +import numpy as np +# import onnxruntime +import parselmouth +import soundfile +import torch +import torchaudio + +from hubert import hubert_model +import utils +from models import SynthesizerTrn + +logging.getLogger('matplotlib').setLevel(logging.WARNING) + + +def read_temp(file_name): + if not os.path.exists(file_name): + with open(file_name, "w") as f: + f.write(json.dumps({"info": "temp_dict"})) + return {} + else: + try: + with open(file_name, "r") as f: + data = f.read() + data_dict = json.loads(data) + if os.path.getsize(file_name) > 50 * 1024 * 1024: + f_name = file_name.split("/")[-1] + print(f"clean {f_name}") + for wav_hash in list(data_dict.keys()): + if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600: + del data_dict[wav_hash] + except Exception as e: + print(e) + print(f"{file_name} error,auto rebuild file") + data_dict = {"info": "temp_dict"} + return data_dict + + +def write_temp(file_name, data): + with open(file_name, "w") as f: + f.write(json.dumps(data)) + + +def timeit(func): + def run(*args, **kwargs): + t = time.time() + res = func(*args, **kwargs) + print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t)) + return res + + return run + + +def format_wav(audio_path): + if Path(audio_path).suffix == '.wav': + return + raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None) + soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate) + + +def get_end_file(dir_path, end): + file_lists = [] + for root, dirs, files in os.walk(dir_path): + files = [f for f in files if f[0] != '.'] + dirs[:] = [d for d in dirs if d[0] != '.'] + for f_file in files: + if f_file.endswith(end): + file_lists.append(os.path.join(root, f_file).replace("\\", "/")) + return file_lists + + +def get_md5(content): + return hashlib.new("md5", content).hexdigest() + + +def resize2d_f0(x, target_len): + source = np.array(x) + source[source < 0.001] = np.nan + target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), + source) + res = np.nan_to_num(target) + return res + +def get_f0(x, p_len,f0_up_key=0): + + time_step = 160 / 16000 * 1000 + f0_min = 50 + f0_max = 1100 + f0_mel_min = 1127 * np.log(1 + f0_min / 700) + f0_mel_max = 1127 * np.log(1 + f0_max / 700) + + f0 = parselmouth.Sound(x, 16000).to_pitch_ac( + time_step=time_step / 1000, voicing_threshold=0.6, + pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] + + pad_size=(p_len - len(f0) + 1) // 2 + if(pad_size>0 or p_len - len(f0) - pad_size>0): + f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') + + f0 *= pow(2, f0_up_key / 12) + f0_mel = 1127 * np.log(1 + f0 / 700) + f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 + f0_mel[f0_mel <= 1] = 1 + f0_mel[f0_mel > 255] = 255 + f0_coarse = np.rint(f0_mel).astype(np.int) + return f0_coarse, f0 + +def clean_pitch(input_pitch): + num_nan = np.sum(input_pitch == 1) + if num_nan / len(input_pitch) > 0.9: + input_pitch[input_pitch != 1] = 1 + return input_pitch + + +def plt_pitch(input_pitch): + input_pitch = input_pitch.astype(float) + input_pitch[input_pitch == 1] = np.nan + return input_pitch + + +def f0_to_pitch(ff): + f0_pitch = 69 + 12 * np.log2(ff / 440) + return f0_pitch + + +def fill_a_to_b(a, b): + if len(a) < len(b): + for _ in range(0, len(b) - len(a)): + a.append(a[0]) + + +def mkdir(paths: list): + for path in paths: + if not os.path.exists(path): + os.mkdir(path) + + +class Svc(object): + def __init__(self, net_g_path, config_path, hubert_path="hubert/hubert-soft-0d54a1f4.pt", + onnx=False): + self.onnx = onnx + self.net_g_path = net_g_path + self.hubert_path = hubert_path + self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") + self.net_g_ms = None + self.hps_ms = utils.get_hparams_from_file(config_path) + self.target_sample = self.hps_ms.data.sampling_rate + self.hop_size = self.hps_ms.data.hop_length + self.speakers = {} + for spk, sid in self.hps_ms.spk.items(): + self.speakers[sid] = spk + self.spk2id = self.hps_ms.spk + # 加载hubert + self.hubert_soft = hubert_model.hubert_soft(hubert_path) + if torch.cuda.is_available(): + self.hubert_soft = self.hubert_soft.cuda() + self.load_model() + + def load_model(self): + # 获取模型配置 + if self.onnx: + raise NotImplementedError + # self.net_g_ms = SynthesizerTrnForONNX( + # 178, + # self.hps_ms.data.filter_length // 2 + 1, + # self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, + # n_speakers=self.hps_ms.data.n_speakers, + # **self.hps_ms.model) + # _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None) + else: + self.net_g_ms = SynthesizerTrn( + self.hps_ms.data.filter_length // 2 + 1, + self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, + **self.hps_ms.model) + _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None) + if "half" in self.net_g_path and torch.cuda.is_available(): + _ = self.net_g_ms.half().eval().to(self.dev) + else: + _ = self.net_g_ms.eval().to(self.dev) + + def get_units(self, source, sr): + + source = source.unsqueeze(0).to(self.dev) + with torch.inference_mode(): + start = time.time() + units = self.hubert_soft.units(source) + use_time = time.time() - start + print("hubert use time:{}".format(use_time)) + return units + + + def get_unit_pitch(self, in_path, tran): + source, sr = torchaudio.load(in_path) + source = torchaudio.functional.resample(source, sr, 16000) + if len(source.shape) == 2 and source.shape[1] >= 2: + source = torch.mean(source, dim=0).unsqueeze(0) + soft = self.get_units(source, sr).squeeze(0).cpu().numpy() + f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran) + return soft, f0 + + def infer(self, speaker_id, tran, raw_path): + if type(speaker_id) == str: + speaker_id = self.spk2id[speaker_id] + sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0) + soft, pitch = self.get_unit_pitch(raw_path, tran) + f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.dev) + if "half" in self.net_g_path and torch.cuda.is_available(): + stn_tst = torch.HalfTensor(soft) + else: + stn_tst = torch.FloatTensor(soft) + with torch.no_grad(): + x_tst = stn_tst.unsqueeze(0).to(self.dev) + start = time.time() + x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2) + audio = self.net_g_ms.infer(x_tst, f0=f0, g=sid)[0,0].data.float() + use_time = time.time() - start + print("vits use time:{}".format(use_time)) + return audio, audio.shape[-1] + + +# class SvcONNXInferModel(object): +# def __init__(self, hubert_onnx, vits_onnx, config_path): +# self.config_path = config_path +# self.vits_onnx = vits_onnx +# self.hubert_onnx = hubert_onnx +# self.hubert_onnx_session = onnxruntime.InferenceSession(hubert_onnx, providers=['CUDAExecutionProvider', ]) +# self.inspect_onnx(self.hubert_onnx_session) +# self.vits_onnx_session = onnxruntime.InferenceSession(vits_onnx, providers=['CUDAExecutionProvider', ]) +# self.inspect_onnx(self.vits_onnx_session) +# self.hps_ms = utils.get_hparams_from_file(self.config_path) +# self.target_sample = self.hps_ms.data.sampling_rate +# self.feature_input = FeatureInput(self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length) +# +# @staticmethod +# def inspect_onnx(session): +# for i in session.get_inputs(): +# print("name:{}\tshape:{}\tdtype:{}".format(i.name, i.shape, i.type)) +# for i in session.get_outputs(): +# print("name:{}\tshape:{}\tdtype:{}".format(i.name, i.shape, i.type)) +# +# def infer(self, speaker_id, tran, raw_path): +# sid = np.array([int(speaker_id)], dtype=np.int64) +# soft, pitch = self.get_unit_pitch(raw_path, tran) +# pitch = np.expand_dims(pitch, axis=0).astype(np.int64) +# stn_tst = soft +# x_tst = np.expand_dims(stn_tst, axis=0) +# x_tst_lengths = np.array([stn_tst.shape[0]], dtype=np.int64) +# # 使用ONNX Runtime进行推理 +# start = time.time() +# audio = self.vits_onnx_session.run(output_names=["audio"], +# input_feed={ +# "hidden_unit": x_tst, +# "lengths": x_tst_lengths, +# "pitch": pitch, +# "sid": sid, +# })[0][0, 0] +# use_time = time.time() - start +# print("vits_onnx_session.run time:{}".format(use_time)) +# audio = torch.from_numpy(audio) +# return audio, audio.shape[-1] +# +# def get_units(self, source, sr): +# source = torchaudio.functional.resample(source, sr, 16000) +# if len(source.shape) == 2 and source.shape[1] >= 2: +# source = torch.mean(source, dim=0).unsqueeze(0) +# source = source.unsqueeze(0) +# # 使用ONNX Runtime进行推理 +# start = time.time() +# units = self.hubert_onnx_session.run(output_names=["embed"], +# input_feed={"source": source.numpy()})[0] +# use_time = time.time() - start +# print("hubert_onnx_session.run time:{}".format(use_time)) +# return units +# +# def transcribe(self, source, sr, length, transform): +# feature_pit = self.feature_input.compute_f0(source, sr) +# feature_pit = feature_pit * 2 ** (transform / 12) +# feature_pit = resize2d_f0(feature_pit, length) +# coarse_pit = self.feature_input.coarse_f0(feature_pit) +# return coarse_pit +# +# def get_unit_pitch(self, in_path, tran): +# source, sr = torchaudio.load(in_path) +# soft = self.get_units(source, sr).squeeze(0) +# input_pitch = self.transcribe(source.numpy()[0], sr, soft.shape[0], tran) +# return soft, input_pitch + + +class RealTimeVC: + def __init__(self): + self.last_chunk = None + self.last_o = None + self.chunk_len = 16000 # 区块长度 + self.pre_len = 3840 # 交叉淡化长度,640的倍数 + + """输入输出都是1维numpy 音频波形数组""" + + def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path): + audio, sr = torchaudio.load(input_wav_path) + audio = audio.cpu().numpy()[0] + temp_wav = io.BytesIO() + if self.last_chunk is None: + input_wav_path.seek(0) + audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path) + audio = audio.cpu().numpy() + self.last_chunk = audio[-self.pre_len:] + self.last_o = audio + return audio[-self.chunk_len:] + else: + audio = np.concatenate([self.last_chunk, audio]) + soundfile.write(temp_wav, audio, sr, format="wav") + temp_wav.seek(0) + audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav) + audio = audio.cpu().numpy() + ret = maad.util.crossfade(self.last_o, audio, self.pre_len) + self.last_chunk = audio[-self.pre_len:] + self.last_o = audio + return ret[self.chunk_len:2 * self.chunk_len] diff --git a/inference/slicer.py b/inference/slicer.py new file mode 100644 index 0000000000000000000000000000000000000000..35a888b906e7df8634cfdcec914f650c6cefd26a --- /dev/null +++ b/inference/slicer.py @@ -0,0 +1,158 @@ +import time + +import numpy as np +import torch +import torchaudio +from scipy.ndimage import maximum_filter1d, uniform_filter1d + + +def timeit(func): + def run(*args, **kwargs): + t = time.time() + res = func(*args, **kwargs) + print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t)) + return res + + return run + + +# @timeit +def _window_maximum(arr, win_sz): + return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1] + + +# @timeit +def _window_rms(arr, win_sz): + filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2)) + return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1] + + +def level2db(levels, eps=1e-12): + return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1)) + + +def _apply_slice(audio, begin, end): + if len(audio.shape) > 1: + return audio[:, begin: end] + else: + return audio[begin: end] + + +class Slicer: + def __init__(self, + sr: int, + db_threshold: float = -40, + min_length: int = 5000, + win_l: int = 300, + win_s: int = 20, + max_silence_kept: int = 500): + self.db_threshold = db_threshold + self.min_samples = round(sr * min_length / 1000) + self.win_ln = round(sr * win_l / 1000) + self.win_sn = round(sr * win_s / 1000) + self.max_silence = round(sr * max_silence_kept / 1000) + if not self.min_samples >= self.win_ln >= self.win_sn: + raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s') + if not self.max_silence >= self.win_sn: + raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s') + + @timeit + def slice(self, audio): + samples = audio + if samples.shape[0] <= self.min_samples: + return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}} + # get absolute amplitudes + abs_amp = np.abs(samples - np.mean(samples)) + # calculate local maximum with large window + win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln)) + sil_tags = [] + left = right = 0 + while right < win_max_db.shape[0]: + if win_max_db[right] < self.db_threshold: + right += 1 + elif left == right: + left += 1 + right += 1 + else: + if left == 0: + split_loc_l = left + else: + sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2) + rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn)) + split_win_l = left + np.argmin(rms_db_left) + split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn]) + if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[ + 0] - 1: + right += 1 + left = right + continue + if right == win_max_db.shape[0] - 1: + split_loc_r = right + self.win_ln + else: + sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2) + rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln], + win_sz=self.win_sn)) + split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right) + split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn]) + sil_tags.append((split_loc_l, split_loc_r)) + right += 1 + left = right + if left != right: + sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2) + rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn)) + split_win_l = left + np.argmin(rms_db_left) + split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn]) + sil_tags.append((split_loc_l, samples.shape[0])) + if len(sil_tags) == 0: + return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}} + else: + chunks = [] + # 第一段静音并非从头开始,补上有声片段 + if sil_tags[0][0]: + chunks.append({"slice": False, "split_time": f"0,{sil_tags[0][0]}"}) + for i in range(0, len(sil_tags)): + # 标识有声片段(跳过第一段) + if i: + chunks.append({"slice": False, "split_time": f"{sil_tags[i - 1][1]},{sil_tags[i][0]}"}) + # 标识所有静音片段 + chunks.append({"slice": True, "split_time": f"{sil_tags[i][0]},{sil_tags[i][1]}"}) + # 最后一段静音并非结尾,补上结尾片段 + if sil_tags[-1][1] != len(audio): + chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1]},{len(audio)}"}) + chunk_dict = {} + for i in range(len(chunks)): + chunk_dict[str(i)] = chunks[i] + return chunk_dict + + +def cut(audio_path, db_thresh=-30, min_len=5000, win_l=300, win_s=20, max_sil_kept=500): + audio, sr = torchaudio.load(audio_path) + if len(audio.shape) == 2 and audio.shape[1] >= 2: + audio = torch.mean(audio, dim=0).unsqueeze(0) + audio = audio.cpu().numpy()[0] + + slicer = Slicer( + sr=sr, + db_threshold=db_thresh, + min_length=min_len, + win_l=win_l, + win_s=win_s, + max_silence_kept=max_sil_kept + ) + chunks = slicer.slice(audio) + return chunks + + +def chunks2audio(audio_path, chunks): + chunks = dict(chunks) + audio, sr = torchaudio.load(audio_path) + if len(audio.shape) == 2 and audio.shape[1] >= 2: + audio = torch.mean(audio, dim=0).unsqueeze(0) + audio = audio.cpu().numpy()[0] + result = [] + for k, v in chunks.items(): + tag = v["split_time"].split(",") + result.append((v["slice"], audio[int(tag[0]):int(tag[1])])) + return result, sr + + diff --git a/inference_main.py b/inference_main.py new file mode 100644 index 0000000000000000000000000000000000000000..825e791db86d37e955f42e8cb34323dbb248ed32 --- /dev/null +++ b/inference_main.py @@ -0,0 +1,65 @@ +import io +import logging +import time +from pathlib import Path + +import librosa +import numpy as np +import soundfile + +from inference import infer_tool +from inference import slicer +from inference.infer_tool import Svc + +logging.getLogger('numba').setLevel(logging.WARNING) +chunks_dict = infer_tool.read_temp("inference/chunks_temp.json") + +model_path = "logs/48k/G_174000-Copy1.pth" +config_path = "configs/config.json" +svc_model = Svc(model_path, config_path) +infer_tool.mkdir(["raw", "results"]) + +# 支持多个wav文件,放在raw文件夹下 +clean_names = ["君の知らない物語-src"] +trans = [-5] # 音高调整,支持正负(半音) +spk_list = ['yunhao'] # 每次同时合成多语者音色 +slice_db = -40 # 默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50 +wav_format = 'flac' # 音频输出格式 + +infer_tool.fill_a_to_b(trans, clean_names) +for clean_name, tran in zip(clean_names, trans): + raw_audio_path = f"raw/{clean_name}" + if "." not in raw_audio_path: + raw_audio_path += ".wav" + infer_tool.format_wav(raw_audio_path) + wav_path = Path(raw_audio_path).with_suffix('.wav') + audio, sr = librosa.load(wav_path, mono=True, sr=None) + wav_hash = infer_tool.get_md5(audio) + if wav_hash in chunks_dict.keys(): + print("load chunks from temp") + chunks = chunks_dict[wav_hash]["chunks"] + else: + chunks = slicer.cut(wav_path, db_thresh=slice_db) + print(chunks) + chunks_dict[wav_hash] = {"chunks": chunks, "time": int(time.time())} + infer_tool.write_temp("inference/chunks_temp.json", chunks_dict) + audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) + + for spk in spk_list: + audio = [] + for (slice_tag, data) in audio_data: + print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') + length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample)) + raw_path = io.BytesIO() + soundfile.write(raw_path, data, audio_sr, format="wav") + raw_path.seek(0) + if slice_tag: + print('jump empty segment') + _audio = np.zeros(length) + else: + out_audio, out_sr = svc_model.infer(spk, tran, raw_path) + _audio = out_audio.cpu().numpy() + audio.extend(list(_audio)) + + res_path = f'./results/{clean_name}_{tran}key_{spk}.{wav_format}' + soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format) diff --git a/logs/32k/D_13000.pth b/logs/32k/D_13000.pth new file mode 100644 index 0000000000000000000000000000000000000000..87598595daa5b523a330783ee4f84e2042bb99ef --- /dev/null +++ b/logs/32k/D_13000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:04aaee549a17a22e5132c01da8b0f1d1095286b58e145c04c0513e6384d35193 +size 561098185 diff --git a/logs/32k/G_11000.pth b/logs/32k/G_11000.pth new file mode 100644 index 0000000000000000000000000000000000000000..606e59eb740f427e09bd8d70ef3a97cdbb6e571c --- /dev/null +++ b/logs/32k/G_11000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a73baad096825d52c8f6bf7c473fe63abe2fd075eaec30483721394bdfc56383 +size 699502365 diff --git a/logs/32k/G_13000.pth b/logs/32k/G_13000.pth new file mode 100644 index 0000000000000000000000000000000000000000..a61de8628ab73866fb78c52242a3f2476de33bd5 --- /dev/null +++ b/logs/32k/G_13000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c35d188ea3442fd5743de989398fdee2c6bafc0b66624f6f583975f70ee5866e +size 699502365 diff --git a/logs/32k/G_16000.pth b/logs/32k/G_16000.pth new file mode 100644 index 0000000000000000000000000000000000000000..26d54436cedfdbadd1318468733e7ccd4790232b --- /dev/null +++ b/logs/32k/G_16000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c47d4398f5c9ad73736d3ad64be7bb9044088ee1b9945bd64581627d3c72074b +size 699502365 diff --git a/logs/32k/G_21000.pth b/logs/32k/G_21000.pth new file mode 100644 index 0000000000000000000000000000000000000000..b5190b6a0bc98f804196f23f9c1d6a021a5c82ad --- /dev/null +++ b/logs/32k/G_21000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4b2602c40f9542c681eb5cfe074c5310cacec364748cd442b06c5825b3463c9d +size 699502365 diff --git a/logs/32k/G_22000.pth b/logs/32k/G_22000.pth new file mode 100644 index 0000000000000000000000000000000000000000..b13c402aa63f927bf6bad2e6a5acf95667f28590 --- /dev/null +++ b/logs/32k/G_22000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a18f976be82810de1b18f8293eb70fa1fe0d1a1275c71a3f0b8a530b470a0366 +size 699502365 diff --git a/logs/32k/G_28000.pth b/logs/32k/G_28000.pth new file mode 100644 index 0000000000000000000000000000000000000000..48a5b90448d0dcb9d5bac6ca11f0bed9181ef37a --- /dev/null +++ b/logs/32k/G_28000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:405331121ec4de6919ca612f109a968201397e434b2c78b2f10376bfe4c0785d +size 699502365 diff --git a/logs/32k/G_35000.pth b/logs/32k/G_35000.pth new file mode 100644 index 0000000000000000000000000000000000000000..b2043a41f909ef3514a9e038f80ffa3f84d3f9f9 --- /dev/null +++ b/logs/32k/G_35000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:90cb8c12634604e17cd99d593ae63eb86788ba18cf831fdc0ad3772811851afe +size 699502365 diff --git a/logs/32k/G_36000.pth b/logs/32k/G_36000.pth new file mode 100644 index 0000000000000000000000000000000000000000..9328ecb9d40cbbd3bef5e9bfc1c45996d47de3a8 --- /dev/null +++ b/logs/32k/G_36000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d5796d728ab7d50c313b855b12fea144f95ccb876e55513d114a01a1697394d1 +size 699502365 diff --git a/logs/32k/G_38000.pth b/logs/32k/G_38000.pth new file mode 100644 index 0000000000000000000000000000000000000000..852cd7af402b86de82bc4841dd78aedb54379fd8 --- /dev/null +++ b/logs/32k/G_38000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:01f1e45b0bce38233015b2718fc91fad49729f41248bd6fa46315fa3baa6127b +size 699502365 diff --git a/logs/32k/G_73000.pth b/logs/32k/G_73000.pth new file mode 100644 index 0000000000000000000000000000000000000000..dd2bb50be9e42c3ad98a0aa3746e09c7be153014 --- /dev/null +++ b/logs/32k/G_73000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ba60df02f994b4d3fe555560537063a520f81e638419a41a23c05fab5d88601 +size 699502365 diff --git a/logs/32k/G_85000.pth b/logs/32k/G_85000.pth new file mode 100644 index 0000000000000000000000000000000000000000..2998b0f87219ac581644178fe1502298c9d8aeea --- /dev/null +++ b/logs/32k/G_85000.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:600e535bf545333990bf60c6fbbe4cc671e48de7ff3eb0cef2f80c8ffaf1eb8d +size 699502365 diff --git a/logs/32k/model in here.txt b/logs/32k/model in here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/losses.py b/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..41f9be6980713a46824ae9ec5eb8fd7c515d89c5 --- /dev/null +++ b/losses.py @@ -0,0 +1,61 @@ +import torch +from torch.nn import functional as F + +import commons + + +def feature_loss(fmap_r, fmap_g): + loss = 0 + for dr, dg in zip(fmap_r, fmap_g): + for rl, gl in zip(dr, dg): + rl = rl.float().detach() + gl = gl.float() + loss += torch.mean(torch.abs(rl - gl)) + + return loss * 2 + + +def discriminator_loss(disc_real_outputs, disc_generated_outputs): + loss = 0 + r_losses = [] + g_losses = [] + for dr, dg in zip(disc_real_outputs, disc_generated_outputs): + dr = dr.float() + dg = dg.float() + r_loss = torch.mean((1-dr)**2) + g_loss = torch.mean(dg**2) + loss += (r_loss + g_loss) + r_losses.append(r_loss.item()) + g_losses.append(g_loss.item()) + + return loss, r_losses, g_losses + + +def generator_loss(disc_outputs): + loss = 0 + gen_losses = [] + for dg in disc_outputs: + dg = dg.float() + l = torch.mean((1-dg)**2) + gen_losses.append(l) + loss += l + + return loss, gen_losses + + +def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): + """ + z_p, logs_q: [b, h, t_t] + m_p, logs_p: [b, h, t_t] + """ + z_p = z_p.float() + logs_q = logs_q.float() + m_p = m_p.float() + logs_p = logs_p.float() + z_mask = z_mask.float() + #print(logs_p) + kl = logs_p - logs_q - 0.5 + kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p) + kl = torch.sum(kl * z_mask) + l = kl / torch.sum(z_mask) + return l diff --git a/mel_processing.py b/mel_processing.py new file mode 100644 index 0000000000000000000000000000000000000000..99c5b35beb83f3b288af0fac5b49ebf2c69f062c --- /dev/null +++ b/mel_processing.py @@ -0,0 +1,112 @@ +import math +import os +import random +import torch +from torch import nn +import torch.nn.functional as F +import torch.utils.data +import numpy as np +import librosa +import librosa.util as librosa_util +from librosa.util import normalize, pad_center, tiny +from scipy.signal import get_window +from scipy.io.wavfile import read +from librosa.filters import mel as librosa_mel_fn + +MAX_WAV_VALUE = 32768.0 + + +def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): + """ + PARAMS + ------ + C: compression factor + """ + return torch.log(torch.clamp(x, min=clip_val) * C) + + +def dynamic_range_decompression_torch(x, C=1): + """ + PARAMS + ------ + C: compression factor used to compress + """ + return torch.exp(x) / C + + +def spectral_normalize_torch(magnitudes): + output = dynamic_range_compression_torch(magnitudes) + return output + + +def spectral_de_normalize_torch(magnitudes): + output = dynamic_range_decompression_torch(magnitudes) + return output + + +mel_basis = {} +hann_window = {} + + +def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): + if torch.min(y) < -1.: + print('min value is ', torch.min(y)) + if torch.max(y) > 1.: + print('max value is ', torch.max(y)) + + global hann_window + dtype_device = str(y.dtype) + '_' + str(y.device) + wnsize_dtype_device = str(win_size) + '_' + dtype_device + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') + y = y.squeeze(1) + + spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], + center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + return spec + + +def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): + global mel_basis + dtype_device = str(spec.dtype) + '_' + str(spec.device) + fmax_dtype_device = str(fmax) + '_' + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + return spec + + +def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): + if torch.min(y) < -1.: + print('min value is ', torch.min(y)) + if torch.max(y) > 1.: + print('max value is ', torch.max(y)) + + global mel_basis, hann_window + dtype_device = str(y.dtype) + '_' + str(y.device) + fmax_dtype_device = str(fmax) + '_' + dtype_device + wnsize_dtype_device = str(win_size) + '_' + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') + y = y.squeeze(1) + + spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], + center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + + return spec diff --git a/models.py b/models.py new file mode 100644 index 0000000000000000000000000000000000000000..bdbce8445304abda792f235a4761b831fd6f4d12 --- /dev/null +++ b/models.py @@ -0,0 +1,351 @@ +import copy +import math +import torch +from torch import nn +from torch.nn import functional as F + +import attentions +import commons +import modules + +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from commons import init_weights, get_padding +from vdecoder.hifigan.models import Generator +from utils import f0_to_coarse + +class ResidualCouplingBlock(nn.Module): + def __init__(self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + n_flows=4, + gin_channels=0): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + +class Encoder(nn.Module): + def __init__(self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + # print(x.shape,x_lengths.shape) + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + +class TextEncoder(nn.Module): + def __init__(self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + filter_channels=None, + n_heads=None, + p_dropout=None): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + self.f0_emb = nn.Embedding(256, hidden_channels) + + self.enc_ = attentions.Encoder( + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout) + + def forward(self, x, x_lengths, f0=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + x = self.pre(x) * x_mask + x = x + self.f0_emb(f0).transpose(1,2) + x = self.enc_(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + + return z, m, logs, x_mask + + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList([ + norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), + ]) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList([ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ]) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2,3,5,7,11] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class SpeakerEncoder(torch.nn.Module): + def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256): + super(SpeakerEncoder, self).__init__() + self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) + self.linear = nn.Linear(model_hidden_size, model_embedding_size) + self.relu = nn.ReLU() + + def forward(self, mels): + self.lstm.flatten_parameters() + _, (hidden, _) = self.lstm(mels) + embeds_raw = self.relu(self.linear(hidden[-1])) + return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) + + def compute_partial_slices(self, total_frames, partial_frames, partial_hop): + mel_slices = [] + for i in range(0, total_frames-partial_frames, partial_hop): + mel_range = torch.arange(i, i+partial_frames) + mel_slices.append(mel_range) + + return mel_slices + + def embed_utterance(self, mel, partial_frames=128, partial_hop=64): + mel_len = mel.size(1) + last_mel = mel[:,-partial_frames:] + + if mel_len > partial_frames: + mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop) + mels = list(mel[:,s] for s in mel_slices) + mels.append(last_mel) + mels = torch.stack(tuple(mels), 0).squeeze(1) + + with torch.no_grad(): + partial_embeds = self(mels) + embed = torch.mean(partial_embeds, axis=0).unsqueeze(0) + #embed = embed / torch.linalg.norm(embed, 2) + else: + with torch.no_grad(): + embed = self(last_mel) + + return embed + + +class SynthesizerTrn(nn.Module): + """ + Synthesizer for Training + """ + + def __init__(self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels, + ssl_dim, + n_speakers, + **kwargs): + + super().__init__() + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + self.ssl_dim = ssl_dim + self.emb_g = nn.Embedding(n_speakers, gin_channels) + + self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout) + hps = { + "sampling_rate": 32000, + "inter_channels": 192, + "resblock": "1", + "resblock_kernel_sizes": [3, 7, 11], + "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], + "upsample_rates": [10, 8, 2, 2], + "upsample_initial_channel": 512, + "upsample_kernel_sizes": [16, 16, 4, 4], + "gin_channels": 256, + } + self.dec = Generator(h=hps) + self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) + self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) + + def forward(self, c, f0, spec, g=None, mel=None, c_lengths=None, spec_lengths=None): + if c_lengths == None: + c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) + if spec_lengths == None: + spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device) + + g = self.emb_g(g).transpose(1,2) + + z_ptemp, m_p, logs_p, _ = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0)) + z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g) + + z_p = self.flow(z, spec_mask, g=g) + z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size) + + # o = self.dec(z_slice, g=g) + o = self.dec(z_slice, g=g, f0=pitch_slice) + + return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, c, f0, g=None, mel=None, c_lengths=None): + if c_lengths == None: + c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) + g = self.emb_g(g).transpose(1,2) + + z_p, m_p, logs_p, c_mask = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0)) + z = self.flow(z_p, c_mask, g=g, reverse=True) + + o = self.dec(z * c_mask, g=g, f0=f0) + + return o diff --git a/modules.py b/modules.py new file mode 100644 index 0000000000000000000000000000000000000000..52ee14e41a5b6d67d875d1b694aecd2a51244897 --- /dev/null +++ b/modules.py @@ -0,0 +1,342 @@ +import copy +import math +import numpy as np +import scipy +import torch +from torch import nn +from torch.nn import functional as F + +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm + +import commons +from commons import init_weights, get_padding + + +LRELU_SLOPE = 0.1 + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +class ConvReluNorm(nn.Module): + def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + assert n_layers > 1, "Number of layers should be larger than 0." + + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.relu_drop = nn.Sequential( + nn.ReLU(), + nn.Dropout(p_dropout)) + for _ in range(n_layers-1): + self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask): + x_org = x + for i in range(self.n_layers): + x = self.conv_layers[i](x * x_mask) + x = self.norm_layers[i](x) + x = self.relu_drop(x) + x = x_org + self.proj(x) + return x * x_mask + + +class DDSConv(nn.Module): + """ + Dialted and Depth-Separable Convolution + """ + def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): + super().__init__() + self.channels = channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + + self.drop = nn.Dropout(p_dropout) + self.convs_sep = nn.ModuleList() + self.convs_1x1 = nn.ModuleList() + self.norms_1 = nn.ModuleList() + self.norms_2 = nn.ModuleList() + for i in range(n_layers): + dilation = kernel_size ** i + padding = (kernel_size * dilation - dilation) // 2 + self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, + groups=channels, dilation=dilation, padding=padding + )) + self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) + self.norms_1.append(LayerNorm(channels)) + self.norms_2.append(LayerNorm(channels)) + + def forward(self, x, x_mask, g=None): + if g is not None: + x = x + g + for i in range(self.n_layers): + y = self.convs_sep[i](x * x_mask) + y = self.norms_1[i](y) + y = F.gelu(y) + y = self.convs_1x1[i](y) + y = self.norms_2[i](y) + y = F.gelu(y) + y = self.drop(y) + x = x + y + return x * x_mask + + +class WN(torch.nn.Module): + def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): + super(WN, self).__init__() + assert(kernel_size % 2 == 1) + self.hidden_channels =hidden_channels + self.kernel_size = kernel_size, + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + self.p_dropout = p_dropout + + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + self.drop = nn.Dropout(p_dropout) + + if gin_channels != 0: + cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') + + for i in range(n_layers): + dilation = dilation_rate ** i + padding = int((kernel_size * dilation - dilation) / 2) + in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, + dilation=dilation, padding=padding) + in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') + self.in_layers.append(in_layer) + + # last one is not necessary + if i < n_layers - 1: + res_skip_channels = 2 * hidden_channels + else: + res_skip_channels = hidden_channels + + res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') + self.res_skip_layers.append(res_skip_layer) + + def forward(self, x, x_mask, g=None, **kwargs): + output = torch.zeros_like(x) + n_channels_tensor = torch.IntTensor([self.hidden_channels]) + + if g is not None: + g = self.cond_layer(g) + + for i in range(self.n_layers): + x_in = self.in_layers[i](x) + if g is not None: + cond_offset = i * 2 * self.hidden_channels + g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] + else: + g_l = torch.zeros_like(x_in) + + acts = commons.fused_add_tanh_sigmoid_multiply( + x_in, + g_l, + n_channels_tensor) + acts = self.drop(acts) + + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.n_layers - 1: + res_acts = res_skip_acts[:,:self.hidden_channels,:] + x = (x + res_acts) * x_mask + output = output + res_skip_acts[:,self.hidden_channels:,:] + else: + output = output + res_skip_acts + return output * x_mask + + def remove_weight_norm(self): + if self.gin_channels != 0: + torch.nn.utils.remove_weight_norm(self.cond_layer) + for l in self.in_layers: + torch.nn.utils.remove_weight_norm(l) + for l in self.res_skip_layers: + torch.nn.utils.remove_weight_norm(l) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]))) + ]) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))) + ]) + self.convs2.apply(init_weights) + + def forward(self, x, x_mask=None): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c2(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]))) + ]) + self.convs.apply(init_weights) + + def forward(self, x, x_mask=None): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class Log(nn.Module): + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask + logdet = torch.sum(-y, [1, 2]) + return y, logdet + else: + x = torch.exp(x) * x_mask + return x + + +class Flip(nn.Module): + def forward(self, x, *args, reverse=False, **kwargs): + x = torch.flip(x, [1]) + if not reverse: + logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) + return x, logdet + else: + return x + + +class ElementwiseAffine(nn.Module): + def __init__(self, channels): + super().__init__() + self.channels = channels + self.m = nn.Parameter(torch.zeros(channels,1)) + self.logs = nn.Parameter(torch.zeros(channels,1)) + + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = self.m + torch.exp(self.logs) * x + y = y * x_mask + logdet = torch.sum(self.logs * x_mask, [1,2]) + return y, logdet + else: + x = (x - self.m) * torch.exp(-self.logs) * x_mask + return x + + +class ResidualCouplingLayer(nn.Module): + def __init__(self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=0, + gin_channels=0, + mean_only=False): + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.half_channels = channels // 2 + self.mean_only = mean_only + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels]*2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, logs = torch.split(stats, [self.half_channels]*2, 1) + else: + m = stats + logs = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(logs) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(logs, [1,2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-logs) * x_mask + x = torch.cat([x0, x1], 1) + return x diff --git a/preprocess_flist_config.py b/preprocess_flist_config.py new file mode 100644 index 0000000000000000000000000000000000000000..927dea890c0057063080b48edc6dd8c2588c6e27 --- /dev/null +++ b/preprocess_flist_config.py @@ -0,0 +1,117 @@ +import os +import argparse +from tqdm import tqdm +from random import shuffle +import json +config_template = { + "train": { + "log_interval": 200, + "eval_interval": 1000, + "seed": 1234, + "epochs": 10000, + "learning_rate": 2e-4, + "betas": [0.8, 0.99], + "eps": 1e-9, + "batch_size": 12, + "fp16_run": False, + "lr_decay": 0.999875, + "segment_size": 17920, + "init_lr_ratio": 1, + "warmup_epochs": 0, + "c_mel": 45, + "c_kl": 1.0, + "use_sr": True, + "max_speclen": 384, + "port": "8001" + }, + "data": { + "training_files":"filelists/train.txt", + "validation_files":"filelists/val.txt", + "max_wav_value": 32768.0, + "sampling_rate": 32000, + "filter_length": 1280, + "hop_length": 320, + "win_length": 1280, + "n_mel_channels": 80, + "mel_fmin": 0.0, + "mel_fmax": None + }, + "model": { + "inter_channels": 192, + "hidden_channels": 192, + "filter_channels": 768, + "n_heads": 2, + "n_layers": 6, + "kernel_size": 3, + "p_dropout": 0.1, + "resblock": "1", + "resblock_kernel_sizes": [3,7,11], + "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]], + "upsample_rates": [10,8,2,2], + "upsample_initial_channel": 512, + "upsample_kernel_sizes": [16,16,4,4], + "n_layers_q": 3, + "use_spectral_norm": False, + "gin_channels": 256, + "ssl_dim": 256, + "n_speakers": 0, + }, + "spk":{ + "nen": 0, + "paimon": 1, + "yunhao": 2 + } +} + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list") + parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list") + parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list") + parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir") + args = parser.parse_args() + + train = [] + val = [] + test = [] + idx = 0 + spk_dict = {} + spk_id = 0 + for speaker in tqdm(os.listdir(args.source_dir)): + spk_dict[speaker] = spk_id + spk_id += 1 + wavs = [os.path.join(args.source_dir, speaker, i)for i in os.listdir(os.path.join(args.source_dir, speaker))] + wavs = [i for i in wavs if i.endswith("wav")] + shuffle(wavs) + train += wavs[2:-10] + val += wavs[:2] + test += wavs[-10:] + n_speakers = len(spk_dict.keys())*2 + shuffle(train) + shuffle(val) + shuffle(test) + + print("Writing", args.train_list) + with open(args.train_list, "w") as f: + for fname in tqdm(train): + wavpath = fname + f.write(wavpath + "\n") + + print("Writing", args.val_list) + with open(args.val_list, "w") as f: + for fname in tqdm(val): + wavpath = fname + f.write(wavpath + "\n") + + print("Writing", args.test_list) + with open(args.test_list, "w") as f: + for fname in tqdm(test): + wavpath = fname + f.write(wavpath + "\n") + + config_template["model"]["n_speakers"] = n_speakers + config_template["spk"] = spk_dict + print("Writing configs/config.json") + with open("configs/config.json", "w") as f: + json.dump(config_template, f, indent=2) diff --git a/preprocess_hubert_f0.py b/preprocess_hubert_f0.py new file mode 100644 index 0000000000000000000000000000000000000000..4fe7f21541acb01537797f430d53b3c0e63279e1 --- /dev/null +++ b/preprocess_hubert_f0.py @@ -0,0 +1,106 @@ +import os +import argparse + +import torch +import json +from glob import glob + +from pyworld import pyworld +from tqdm import tqdm +from scipy.io import wavfile + +import utils +from mel_processing import mel_spectrogram_torch +#import h5py +import logging +logging.getLogger('numba').setLevel(logging.WARNING) + +import parselmouth +import librosa +import numpy as np + + +def get_f0(path,p_len=None, f0_up_key=0): + x, _ = librosa.load(path, 32000) + if p_len is None: + p_len = x.shape[0]//320 + else: + assert abs(p_len-x.shape[0]//320) < 3, (path, p_len, x.shape) + time_step = 320 / 32000 * 1000 + f0_min = 50 + f0_max = 1100 + f0_mel_min = 1127 * np.log(1 + f0_min / 700) + f0_mel_max = 1127 * np.log(1 + f0_max / 700) + + f0 = parselmouth.Sound(x, 32000).to_pitch_ac( + time_step=time_step / 1000, voicing_threshold=0.6, + pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] + + pad_size=(p_len - len(f0) + 1) // 2 + if(pad_size>0 or p_len - len(f0) - pad_size>0): + f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') + + f0bak = f0.copy() + f0 *= pow(2, f0_up_key / 12) + f0_mel = 1127 * np.log(1 + f0 / 700) + f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 + f0_mel[f0_mel <= 1] = 1 + f0_mel[f0_mel > 255] = 255 + f0_coarse = np.rint(f0_mel).astype(np.int) + return f0_coarse, f0bak + +def resize2d(x, target_len): + source = np.array(x) + source[source<0.001] = np.nan + target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source) + res = np.nan_to_num(target) + return res + +def compute_f0(path, c_len): + x, sr = librosa.load(path, sr=32000) + f0, t = pyworld.dio( + x.astype(np.double), + fs=sr, + f0_ceil=800, + frame_period=1000 * 320 / sr, + ) + f0 = pyworld.stonemask(x.astype(np.double), f0, t, 32000) + for index, pitch in enumerate(f0): + f0[index] = round(pitch, 1) + assert abs(c_len - x.shape[0]//320) < 3, (c_len, f0.shape) + + return None, resize2d(f0, c_len) + + +def process(filename): + print(filename) + save_name = filename+".soft.pt" + if not os.path.exists(save_name): + devive = torch.device("cuda" if torch.cuda.is_available() else "cpu") + wav, _ = librosa.load(filename, sr=16000) + wav = torch.from_numpy(wav).unsqueeze(0).to(devive) + c = utils.get_hubert_content(hmodel, wav) + torch.save(c.cpu(), save_name) + else: + c = torch.load(save_name) + f0path = filename+".f0.npy" + if not os.path.exists(f0path): + cf0, f0 = compute_f0(filename, c.shape[-1] * 2) + np.save(f0path, f0) + + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--in_dir", type=str, default="dataset/32k", help="path to input dir") + args = parser.parse_args() + + print("Loading hubert for content...") + hmodel = utils.get_hubert_model(0 if torch.cuda.is_available() else None) + print("Loaded hubert.") + + filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)#[:10] + + for filename in tqdm(filenames): + process(filename) + \ No newline at end of file diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..2b632681aa9997f6175ce17c57f456023744a0c9 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,16 @@ +numpy +playsound +pydub +pyworld +requests +scipy +sounddevice +SoundFile +starlette +torch +torchaudio +tqdm +scikit-maad +praat-parselmouth +librosa +torchvision \ No newline at end of file diff --git a/resample.py b/resample.py new file mode 100644 index 0000000000000000000000000000000000000000..fabae4afbb330cccad1681b7941a63547c93c640 --- /dev/null +++ b/resample.py @@ -0,0 +1,47 @@ +import os +import argparse +import librosa +import numpy as np +from multiprocessing import Pool, cpu_count +from scipy.io import wavfile +from tqdm import tqdm + + +def process(item): + spkdir, wav_name, args = item + # speaker 's5', 'p280', 'p315' are excluded, + speaker = spkdir.split(os.sep)[-1] + wav_path = os.path.join(args.in_dir, speaker, wav_name) + if os.path.exists(wav_path) and '.wav' in wav_path: + os.makedirs(os.path.join(args.out_dir2, speaker), exist_ok=True) + wav, sr = librosa.load(wav_path, None) + wav, _ = librosa.effects.trim(wav, top_db=20) + peak = np.abs(wav).max() + if peak > 1.0: + wav = 0.98 * wav / peak + wav2 = librosa.resample(wav, orig_sr=sr, target_sr=args.sr2) + save_name = wav_name + save_path2 = os.path.join(args.out_dir2, speaker, save_name) + wavfile.write( + save_path2, + args.sr2, + (wav2 * np.iinfo(np.int16).max).astype(np.int16) + ) + + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--sr2", type=int, default=32000, help="sampling rate") + parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir") + parser.add_argument("--out_dir2", type=str, default="./dataset/32k", help="path to target dir") + args = parser.parse_args() + processs = cpu_count()-2 if cpu_count() >4 else 1 + pool = Pool(processes=processs) + + for speaker in os.listdir(args.in_dir): + spk_dir = os.path.join(args.in_dir, speaker) + if os.path.isdir(spk_dir): + print(spk_dir) + for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])): + pass diff --git a/spec_gen.py b/spec_gen.py new file mode 100644 index 0000000000000000000000000000000000000000..85ad3188ac93aaef7b1b1d7dbbe47d358f4b0da6 --- /dev/null +++ b/spec_gen.py @@ -0,0 +1,22 @@ +from data_utils import TextAudioSpeakerLoader, EvalDataLoader +import json +from tqdm import tqdm + +from utils import HParams + +config_path = 'configs/config.json' +with open(config_path, "r") as f: + data = f.read() +config = json.loads(data) +hps = HParams(**config) + +train_dataset = TextAudioSpeakerLoader("filelists/train.txt", hps) +test_dataset = TextAudioSpeakerLoader("filelists/test.txt", hps) +eval_dataset = TextAudioSpeakerLoader("filelists/val.txt", hps) + +for _ in tqdm(train_dataset): + pass +for _ in tqdm(eval_dataset): + pass +for _ in tqdm(test_dataset): + pass \ No newline at end of file diff --git a/terms.md b/terms.md new file mode 100644 index 0000000000000000000000000000000000000000..df79fb9b5a9312b7d5d91920f1673c7e9ea1f528 --- /dev/null +++ b/terms.md @@ -0,0 +1,51 @@ +在使用此模型前请阅读以下协议,本协议修改自MasterSatori + +logs上传pth,app.py改模型,首次改config.json,app.py改模型路径,名称,最下面也要改 + +​ 本协议将帮助您了解以下内容: + +​ 一、免责声明 + +​ 二、您在非个人使用场合时使用AI草莓猫taffy模型应当做的事 + +​ 三、AI草莓猫taffy模型的使用范围 + +​ 四、如何联系我 + +​ (一) 免责声明: + +​ 您因使用AI草莓猫taffy模型对其它任何实体(个人/企业)所造成的任何损失由您自身承担,您因使用AI草莓猫taffy模型所产生的一切法律风险及法律纠纷由您自身承担。 + +​ (二) 您在非个人使用场合时使用AI草莓猫taffy模型应当做的事: + +​ 1、注明soVITS项目作者:Rcell + +​ 2、注明我(可选):cynika + +​ (三) AI草莓猫taffy模型的使用范围: + +​ 1、您可以使用的范围: + +​ (1) 个人使用 + +​ (2) 将产生的音频用于投稿(投稿内容不得包含“您不可使用的范围”中的内容) + +​ (3) 符合投稿平台和当地法律的二创内容 + +​ 2、您不可使用的范围: + +​ (1) 商业使用 + +​ (2) 假冒本人 + +​ (3) 当作变声器等使用 + +​ (4) 将AI草莓猫taffy模型再次上传 + +​ (5) 低创内容(合成的音频中有过多的爆音或电音属于“低创内容”) + +​ (6) 敏感内容(包括但不限于:政治、低俗、色情、暴力等) + +​ 3、补充内容: + +​ 在其他未被提及的场合使用AI草莓猫taffy模型及其所产生的数据时您应当征求我的意见.cynika@bilibili。 diff --git a/train.py b/train.py new file mode 100644 index 0000000000000000000000000000000000000000..97557410edb18717b0330c602fbaa9984f647b13 --- /dev/null +++ b/train.py @@ -0,0 +1,281 @@ +import logging +logging.getLogger('matplotlib').setLevel(logging.WARNING) +import os +import json +import argparse +import itertools +import math +import torch +from torch import nn, optim +from torch.nn import functional as F +from torch.utils.data import DataLoader +from torch.utils.tensorboard import SummaryWriter +import torch.multiprocessing as mp +import torch.distributed as dist +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.cuda.amp import autocast, GradScaler + +import commons +import utils +from data_utils import TextAudioSpeakerLoader, EvalDataLoader +from models import ( + SynthesizerTrn, + MultiPeriodDiscriminator, +) +from losses import ( + kl_loss, + generator_loss, discriminator_loss, feature_loss +) + +from mel_processing import mel_spectrogram_torch, spec_to_mel_torch + +torch.backends.cudnn.benchmark = True +global_step = 0 + + +# os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO' + + +def main(): + """Assume Single Node Multi GPUs Training Only""" + assert torch.cuda.is_available(), "CPU training is not allowed." + hps = utils.get_hparams() + + n_gpus = torch.cuda.device_count() + os.environ['MASTER_ADDR'] = 'localhost' + os.environ['MASTER_PORT'] = hps.train.port + + mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) + + +def run(rank, n_gpus, hps): + global global_step + if rank == 0: + logger = utils.get_logger(hps.model_dir) + logger.info(hps) + utils.check_git_hash(hps.model_dir) + writer = SummaryWriter(log_dir=hps.model_dir) + writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) + + dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank) + torch.manual_seed(hps.train.seed) + torch.cuda.set_device(rank) + + train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps) + train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True, + batch_size=hps.train.batch_size) + if rank == 0: + eval_dataset = EvalDataLoader(hps.data.validation_files, hps) + eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False, + batch_size=1, pin_memory=False, + drop_last=False) + + net_g = SynthesizerTrn( + hps.data.filter_length // 2 + 1, + hps.train.segment_size // hps.data.hop_length, + **hps.model).cuda(rank) + net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) + optim_g = torch.optim.AdamW( + net_g.parameters(), + hps.train.learning_rate, + betas=hps.train.betas, + eps=hps.train.eps) + optim_d = torch.optim.AdamW( + net_d.parameters(), + hps.train.learning_rate, + betas=hps.train.betas, + eps=hps.train.eps) + net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True) + net_d = DDP(net_d, device_ids=[rank]) + + try: + _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, + optim_g) + _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, + optim_d) + global_step = (epoch_str - 1) * len(train_loader) + except: + epoch_str = 1 + global_step = 0 + + scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) + scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) + + scaler = GradScaler(enabled=hps.train.fp16_run) + + for epoch in range(epoch_str, hps.train.epochs + 1): + if rank == 0: + train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, + [train_loader, eval_loader], logger, [writer, writer_eval]) + else: + train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, + [train_loader, None], None, None) + scheduler_g.step() + scheduler_d.step() + + +def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): + net_g, net_d = nets + optim_g, optim_d = optims + scheduler_g, scheduler_d = schedulers + train_loader, eval_loader = loaders + if writers is not None: + writer, writer_eval = writers + + # train_loader.batch_sampler.set_epoch(epoch) + global global_step + + net_g.train() + net_d.train() + for batch_idx, items in enumerate(train_loader): + c, f0, spec, y, spk = items + g = spk.cuda(rank, non_blocking=True) + spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True) + c = c.cuda(rank, non_blocking=True) + f0 = f0.cuda(rank, non_blocking=True) + mel = spec_to_mel_torch( + spec, + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.mel_fmin, + hps.data.mel_fmax) + + with autocast(enabled=hps.train.fp16_run): + y_hat, ids_slice, z_mask, \ + (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(c, f0, spec, g=g, mel=mel) + + y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) + y_hat_mel = mel_spectrogram_torch( + y_hat.squeeze(1), + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.hop_length, + hps.data.win_length, + hps.data.mel_fmin, + hps.data.mel_fmax + ) + y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice + + # Discriminator + y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) + + with autocast(enabled=False): + loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) + loss_disc_all = loss_disc + + optim_d.zero_grad() + scaler.scale(loss_disc_all).backward() + scaler.unscale_(optim_d) + grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) + scaler.step(optim_d) + + with autocast(enabled=hps.train.fp16_run): + # Generator + y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) + with autocast(enabled=False): + loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel + loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl + loss_fm = feature_loss(fmap_r, fmap_g) + loss_gen, losses_gen = generator_loss(y_d_hat_g) + loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + optim_g.zero_grad() + scaler.scale(loss_gen_all).backward() + scaler.unscale_(optim_g) + grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) + scaler.step(optim_g) + scaler.update() + + if rank == 0: + if global_step % hps.train.log_interval == 0: + lr = optim_g.param_groups[0]['lr'] + losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl] + logger.info('Train Epoch: {} [{:.0f}%]'.format( + epoch, + 100. * batch_idx / len(train_loader))) + logger.info([x.item() for x in losses] + [global_step, lr]) + + scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, + "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g} + scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl}) + + scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}) + scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}) + scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}) + image_dict = { + "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), + "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), + "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), + } + + utils.summarize( + writer=writer, + global_step=global_step, + images=image_dict, + scalars=scalar_dict + ) + + if global_step % hps.train.eval_interval == 0: + evaluate(hps, net_g, eval_loader, writer_eval) + utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, + os.path.join(hps.model_dir, "G_{}.pth".format(global_step))) + utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, + os.path.join(hps.model_dir, "D_{}.pth".format(global_step))) + global_step += 1 + + if rank == 0: + logger.info('====> Epoch: {}'.format(epoch)) + + +def evaluate(hps, generator, eval_loader, writer_eval): + generator.eval() + image_dict = {} + audio_dict = {} + with torch.no_grad(): + for batch_idx, items in enumerate(eval_loader): + c, f0, spec, y, spk = items + g = spk[:1].cuda(0) + spec, y = spec[:1].cuda(0), y[:1].cuda(0) + c = c[:1].cuda(0) + f0 = f0[:1].cuda(0) + mel = spec_to_mel_torch( + spec, + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.mel_fmin, + hps.data.mel_fmax) + y_hat = generator.module.infer(c, f0, g=g, mel=mel) + + y_hat_mel = mel_spectrogram_torch( + y_hat.squeeze(1).float(), + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.hop_length, + hps.data.win_length, + hps.data.mel_fmin, + hps.data.mel_fmax + ) + + audio_dict.update({ + f"gen/audio_{batch_idx}": y_hat[0], + f"gt/audio_{batch_idx}": y[0] + }) + image_dict.update({ + f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()), + "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy()) + }) + utils.summarize( + writer=writer_eval, + global_step=global_step, + images=image_dict, + audios=audio_dict, + audio_sampling_rate=hps.data.sampling_rate + ) + generator.train() + + +if __name__ == "__main__": + main() diff --git a/utils.py b/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..3733a75111dc89cefa333b34933ae01623550ea7 --- /dev/null +++ b/utils.py @@ -0,0 +1,338 @@ +import os +import glob +import sys +import argparse +import logging +import json +import subprocess + +import librosa +import numpy as np +import torchaudio +from scipy.io.wavfile import read +import torch +import torchvision +from torch.nn import functional as F +from commons import sequence_mask +from hubert import hubert_model +MATPLOTLIB_FLAG = False + +logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) +logger = logging + +f0_bin = 256 +f0_max = 1100.0 +f0_min = 50.0 +f0_mel_min = 1127 * np.log(1 + f0_min / 700) +f0_mel_max = 1127 * np.log(1 + f0_max / 700) + +def f0_to_coarse(f0): + is_torch = isinstance(f0, torch.Tensor) + f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) + f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 + + f0_mel[f0_mel <= 1] = 1 + f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 + f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) + assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) + return f0_coarse + + +def get_hubert_model(rank=None): + + hubert_soft = hubert_model.hubert_soft("hubert/hubert-soft-0d54a1f4.pt") + if rank is not None: + hubert_soft = hubert_soft.cuda(rank) + return hubert_soft + +def get_hubert_content(hmodel, y=None, path=None): + if path is not None: + source, sr = torchaudio.load(path) + source = torchaudio.functional.resample(source, sr, 16000) + if len(source.shape) == 2 and source.shape[1] >= 2: + source = torch.mean(source, dim=0).unsqueeze(0) + else: + source = y + source = source.unsqueeze(0) + with torch.inference_mode(): + units = hmodel.units(source) + return units.transpose(1,2) + + +def get_content(cmodel, y): + with torch.no_grad(): + c = cmodel.extract_features(y.squeeze(1))[0] + c = c.transpose(1, 2) + return c + + + +def transform(mel, height): # 68-92 + #r = np.random.random() + #rate = r * 0.3 + 0.85 # 0.85-1.15 + #height = int(mel.size(-2) * rate) + tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1))) + if height >= mel.size(-2): + return tgt[:, :mel.size(-2), :] + else: + silence = tgt[:,-1:,:].repeat(1,mel.size(-2)-height,1) + silence += torch.randn_like(silence) / 10 + return torch.cat((tgt, silence), 1) + + +def stretch(mel, width): # 0.5-2 + return torchvision.transforms.functional.resize(mel, (mel.size(-2), width)) + + +def load_checkpoint(checkpoint_path, model, optimizer=None): + assert os.path.isfile(checkpoint_path) + checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') + iteration = checkpoint_dict['iteration'] + learning_rate = checkpoint_dict['learning_rate'] + if iteration is None: + iteration = 1 + if learning_rate is None: + learning_rate = 0.0002 + if optimizer is not None and checkpoint_dict['optimizer'] is not None: + optimizer.load_state_dict(checkpoint_dict['optimizer']) + saved_state_dict = checkpoint_dict['model'] + if hasattr(model, 'module'): + state_dict = model.module.state_dict() + else: + state_dict = model.state_dict() + new_state_dict= {} + for k, v in state_dict.items(): + try: + new_state_dict[k] = saved_state_dict[k] + except: + logger.info("%s is not in the checkpoint" % k) + new_state_dict[k] = v + if hasattr(model, 'module'): + model.module.load_state_dict(new_state_dict) + else: + model.load_state_dict(new_state_dict) + logger.info("Loaded checkpoint '{}' (iteration {})" .format( + checkpoint_path, iteration)) + return model, optimizer, learning_rate, iteration + + +def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): + # ckptname = checkpoint_path.split(os.sep)[-1] + # newest_step = int(ckptname.split(".")[0].split("_")[1]) + # val_steps = 2000 + # last_ckptname = checkpoint_path.replace(str(newest_step), str(newest_step - val_steps*3)) + # if newest_step >= val_steps*3: + # os.system(f"rm {last_ckptname}") + logger.info("Saving model and optimizer state at iteration {} to {}".format( + iteration, checkpoint_path)) + if hasattr(model, 'module'): + state_dict = model.module.state_dict() + else: + state_dict = model.state_dict() + torch.save({'model': state_dict, + 'iteration': iteration, + 'optimizer': optimizer.state_dict(), + 'learning_rate': learning_rate}, checkpoint_path) + + +def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): + for k, v in scalars.items(): + writer.add_scalar(k, v, global_step) + for k, v in histograms.items(): + writer.add_histogram(k, v, global_step) + for k, v in images.items(): + writer.add_image(k, v, global_step, dataformats='HWC') + for k, v in audios.items(): + writer.add_audio(k, v, global_step, audio_sampling_rate) + + +def latest_checkpoint_path(dir_path, regex="G_*.pth"): + f_list = glob.glob(os.path.join(dir_path, regex)) + f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) + x = f_list[-1] + print(x) + return x + + +def plot_spectrogram_to_numpy(spectrogram): + global MATPLOTLIB_FLAG + if not MATPLOTLIB_FLAG: + import matplotlib + matplotlib.use("Agg") + MATPLOTLIB_FLAG = True + mpl_logger = logging.getLogger('matplotlib') + mpl_logger.setLevel(logging.WARNING) + import matplotlib.pylab as plt + import numpy as np + + fig, ax = plt.subplots(figsize=(10,2)) + im = ax.imshow(spectrogram, aspect="auto", origin="lower", + interpolation='none') + plt.colorbar(im, ax=ax) + plt.xlabel("Frames") + plt.ylabel("Channels") + plt.tight_layout() + + fig.canvas.draw() + data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') + data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) + plt.close() + return data + + +def plot_alignment_to_numpy(alignment, info=None): + global MATPLOTLIB_FLAG + if not MATPLOTLIB_FLAG: + import matplotlib + matplotlib.use("Agg") + MATPLOTLIB_FLAG = True + mpl_logger = logging.getLogger('matplotlib') + mpl_logger.setLevel(logging.WARNING) + import matplotlib.pylab as plt + import numpy as np + + fig, ax = plt.subplots(figsize=(6, 4)) + im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', + interpolation='none') + fig.colorbar(im, ax=ax) + xlabel = 'Decoder timestep' + if info is not None: + xlabel += '\n\n' + info + plt.xlabel(xlabel) + plt.ylabel('Encoder timestep') + plt.tight_layout() + + fig.canvas.draw() + data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') + data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) + plt.close() + return data + + +def load_wav_to_torch(full_path): + sampling_rate, data = read(full_path) + return torch.FloatTensor(data.astype(np.float32)), sampling_rate + + +def load_filepaths_and_text(filename, split="|"): + with open(filename, encoding='utf-8') as f: + filepaths_and_text = [line.strip().split(split) for line in f] + return filepaths_and_text + + +def get_hparams(init=True): + parser = argparse.ArgumentParser() + parser.add_argument('-c', '--config', type=str, default="./configs/base.json", + help='JSON file for configuration') + parser.add_argument('-m', '--model', type=str, required=True, + help='Model name') + + args = parser.parse_args() + model_dir = os.path.join("./logs", args.model) + + if not os.path.exists(model_dir): + os.makedirs(model_dir) + + config_path = args.config + config_save_path = os.path.join(model_dir, "config.json") + if init: + with open(config_path, "r") as f: + data = f.read() + with open(config_save_path, "w") as f: + f.write(data) + else: + with open(config_save_path, "r") as f: + data = f.read() + config = json.loads(data) + + hparams = HParams(**config) + hparams.model_dir = model_dir + return hparams + + +def get_hparams_from_dir(model_dir): + config_save_path = os.path.join(model_dir, "config.json") + with open(config_save_path, "r") as f: + data = f.read() + config = json.loads(data) + + hparams =HParams(**config) + hparams.model_dir = model_dir + return hparams + + +def get_hparams_from_file(config_path): + with open(config_path, "r") as f: + data = f.read() + config = json.loads(data) + + hparams =HParams(**config) + return hparams + + +def check_git_hash(model_dir): + source_dir = os.path.dirname(os.path.realpath(__file__)) + if not os.path.exists(os.path.join(source_dir, ".git")): + logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( + source_dir + )) + return + + cur_hash = subprocess.getoutput("git rev-parse HEAD") + + path = os.path.join(model_dir, "githash") + if os.path.exists(path): + saved_hash = open(path).read() + if saved_hash != cur_hash: + logger.warn("git hash values are different. {}(saved) != {}(current)".format( + saved_hash[:8], cur_hash[:8])) + else: + open(path, "w").write(cur_hash) + + +def get_logger(model_dir, filename="train.log"): + global logger + logger = logging.getLogger(os.path.basename(model_dir)) + logger.setLevel(logging.DEBUG) + + formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") + if not os.path.exists(model_dir): + os.makedirs(model_dir) + h = logging.FileHandler(os.path.join(model_dir, filename)) + h.setLevel(logging.DEBUG) + h.setFormatter(formatter) + logger.addHandler(h) + return logger + + +class HParams(): + def __init__(self, **kwargs): + for k, v in kwargs.items(): + if type(v) == dict: + v = HParams(**v) + self[k] = v + + def keys(self): + return self.__dict__.keys() + + def items(self): + return self.__dict__.items() + + def values(self): + return self.__dict__.values() + + def __len__(self): + return len(self.__dict__) + + def __getitem__(self, key): + return getattr(self, key) + + def __setitem__(self, key, value): + return setattr(self, key, value) + + def __contains__(self, key): + return key in self.__dict__ + + def __repr__(self): + return self.__dict__.__repr__() + diff --git a/vdecoder/__init__.py b/vdecoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/vdecoder/hifigan/env.py b/vdecoder/hifigan/env.py new file mode 100644 index 0000000000000000000000000000000000000000..2bdbc95d4f7a8bad8fd4f5eef657e2b51d946056 --- /dev/null +++ b/vdecoder/hifigan/env.py @@ -0,0 +1,15 @@ +import os +import shutil + + +class AttrDict(dict): + def __init__(self, *args, **kwargs): + super(AttrDict, self).__init__(*args, **kwargs) + self.__dict__ = self + + +def build_env(config, config_name, path): + t_path = os.path.join(path, config_name) + if config != t_path: + os.makedirs(path, exist_ok=True) + shutil.copyfile(config, os.path.join(path, config_name)) diff --git a/vdecoder/hifigan/models.py b/vdecoder/hifigan/models.py new file mode 100644 index 0000000000000000000000000000000000000000..bdc3fa2c3447f360472d94c2fad9bd74993f6410 --- /dev/null +++ b/vdecoder/hifigan/models.py @@ -0,0 +1,500 @@ +import os +import json +from .env import AttrDict +import numpy as np +import torch +import torch.nn.functional as F +import torch.nn as nn +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from .utils import init_weights, get_padding + +LRELU_SLOPE = 0.1 + + +def load_model(model_path, device='cuda'): + config_file = os.path.join(os.path.split(model_path)[0], 'config.json') + with open(config_file) as f: + data = f.read() + + global h + json_config = json.loads(data) + h = AttrDict(json_config) + + generator = Generator(h).to(device) + + cp_dict = torch.load(model_path) + generator.load_state_dict(cp_dict['generator']) + generator.eval() + generator.remove_weight_norm() + del cp_dict + return generator, h + + +class ResBlock1(torch.nn.Module): + def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.h = h + self.convs1 = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]))) + ]) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))) + ]) + self.convs2.apply(init_weights) + + def forward(self, x): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + xt = c2(xt) + x = xt + x + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.h = h + self.convs = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]))) + ]) + self.convs.apply(init_weights) + + def forward(self, x): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c(xt) + x = xt + x + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class SineGen(torch.nn.Module): + """ Definition of sine generator + SineGen(samp_rate, harmonic_num = 0, + sine_amp = 0.1, noise_std = 0.003, + voiced_threshold = 0, + flag_for_pulse=False) + samp_rate: sampling rate in Hz + harmonic_num: number of harmonic overtones (default 0) + sine_amp: amplitude of sine-wavefrom (default 0.1) + noise_std: std of Gaussian noise (default 0.003) + voiced_thoreshold: F0 threshold for U/V classification (default 0) + flag_for_pulse: this SinGen is used inside PulseGen (default False) + Note: when flag_for_pulse is True, the first time step of a voiced + segment is always sin(np.pi) or cos(0) + """ + + def __init__(self, samp_rate, harmonic_num=0, + sine_amp=0.1, noise_std=0.003, + voiced_threshold=0, + flag_for_pulse=False): + super(SineGen, self).__init__() + self.sine_amp = sine_amp + self.noise_std = noise_std + self.harmonic_num = harmonic_num + self.dim = self.harmonic_num + 1 + self.sampling_rate = samp_rate + self.voiced_threshold = voiced_threshold + self.flag_for_pulse = flag_for_pulse + + def _f02uv(self, f0): + # generate uv signal + uv = (f0 > self.voiced_threshold).type(torch.float32) + return uv + + def _f02sine(self, f0_values): + """ f0_values: (batchsize, length, dim) + where dim indicates fundamental tone and overtones + """ + # convert to F0 in rad. The interger part n can be ignored + # because 2 * np.pi * n doesn't affect phase + rad_values = (f0_values / self.sampling_rate) % 1 + + # initial phase noise (no noise for fundamental component) + rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ + device=f0_values.device) + rand_ini[:, 0] = 0 + rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini + + # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) + if not self.flag_for_pulse: + # for normal case + + # To prevent torch.cumsum numerical overflow, + # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. + # Buffer tmp_over_one_idx indicates the time step to add -1. + # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi + tmp_over_one = torch.cumsum(rad_values, 1) % 1 + tmp_over_one_idx = (torch.diff(tmp_over_one, dim=1)) < 0 + cumsum_shift = torch.zeros_like(rad_values) + cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 + + sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) + * 2 * np.pi) + else: + # If necessary, make sure that the first time step of every + # voiced segments is sin(pi) or cos(0) + # This is used for pulse-train generation + + # identify the last time step in unvoiced segments + uv = self._f02uv(f0_values) + uv_1 = torch.roll(uv, shifts=-1, dims=1) + uv_1[:, -1, :] = 1 + u_loc = (uv < 1) * (uv_1 > 0) + + # get the instantanouse phase + tmp_cumsum = torch.cumsum(rad_values, dim=1) + # different batch needs to be processed differently + for idx in range(f0_values.shape[0]): + temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] + temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] + # stores the accumulation of i.phase within + # each voiced segments + tmp_cumsum[idx, :, :] = 0 + tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum + + # rad_values - tmp_cumsum: remove the accumulation of i.phase + # within the previous voiced segment. + i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) + + # get the sines + sines = torch.cos(i_phase * 2 * np.pi) + return sines + + def forward(self, f0): + """ sine_tensor, uv = forward(f0) + input F0: tensor(batchsize=1, length, dim=1) + f0 for unvoiced steps should be 0 + output sine_tensor: tensor(batchsize=1, length, dim) + output uv: tensor(batchsize=1, length, 1) + """ + with torch.no_grad(): + f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, + device=f0.device) + # fundamental component + fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) + + # generate sine waveforms + sine_waves = self._f02sine(fn) * self.sine_amp + + # generate uv signal + # uv = torch.ones(f0.shape) + # uv = uv * (f0 > self.voiced_threshold) + uv = self._f02uv(f0) + + # noise: for unvoiced should be similar to sine_amp + # std = self.sine_amp/3 -> max value ~ self.sine_amp + # . for voiced regions is self.noise_std + noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 + noise = noise_amp * torch.randn_like(sine_waves) + + # first: set the unvoiced part to 0 by uv + # then: additive noise + sine_waves = sine_waves * uv + noise + return sine_waves, uv, noise + + +class SourceModuleHnNSF(torch.nn.Module): + """ SourceModule for hn-nsf + SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, + add_noise_std=0.003, voiced_threshod=0) + sampling_rate: sampling_rate in Hz + harmonic_num: number of harmonic above F0 (default: 0) + sine_amp: amplitude of sine source signal (default: 0.1) + add_noise_std: std of additive Gaussian noise (default: 0.003) + note that amplitude of noise in unvoiced is decided + by sine_amp + voiced_threshold: threhold to set U/V given F0 (default: 0) + Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) + F0_sampled (batchsize, length, 1) + Sine_source (batchsize, length, 1) + noise_source (batchsize, length 1) + uv (batchsize, length, 1) + """ + + def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1, + add_noise_std=0.003, voiced_threshod=0): + super(SourceModuleHnNSF, self).__init__() + + self.sine_amp = sine_amp + self.noise_std = add_noise_std + + # to produce sine waveforms + self.l_sin_gen = SineGen(sampling_rate, harmonic_num, + sine_amp, add_noise_std, voiced_threshod) + + # to merge source harmonics into a single excitation + self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) + self.l_tanh = torch.nn.Tanh() + + def forward(self, x): + """ + Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) + F0_sampled (batchsize, length, 1) + Sine_source (batchsize, length, 1) + noise_source (batchsize, length 1) + """ + # source for harmonic branch + sine_wavs, uv, _ = self.l_sin_gen(x) + sine_merge = self.l_tanh(self.l_linear(sine_wavs)) + + # source for noise branch, in the same shape as uv + noise = torch.randn_like(uv) * self.sine_amp / 3 + return sine_merge, noise, uv + + +class Generator(torch.nn.Module): + def __init__(self, h): + super(Generator, self).__init__() + self.h = h + + self.num_kernels = len(h["resblock_kernel_sizes"]) + self.num_upsamples = len(h["upsample_rates"]) + self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"])) + self.m_source = SourceModuleHnNSF( + sampling_rate=h["sampling_rate"], + harmonic_num=8) + self.noise_convs = nn.ModuleList() + self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3)) + resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2 + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])): + c_cur = h["upsample_initial_channel"] // (2 ** (i + 1)) + self.ups.append(weight_norm( + ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)), + k, u, padding=(k - u) // 2))) + if i + 1 < len(h["upsample_rates"]): # + stride_f0 = np.prod(h["upsample_rates"][i + 1:]) + self.noise_convs.append(Conv1d( + 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2)) + else: + self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = h["upsample_initial_channel"] // (2 ** (i + 1)) + for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])): + self.resblocks.append(resblock(h, ch, k, d)) + + self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) + self.ups.apply(init_weights) + self.conv_post.apply(init_weights) + self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1) + + def forward(self, x, f0, g=None): + # print(1,x.shape,f0.shape,f0[:, None].shape) + f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t + # print(2,f0.shape) + har_source, noi_source, uv = self.m_source(f0) + har_source = har_source.transpose(1, 2) + x = self.conv_pre(x) + x = x + self.cond(g) + # print(124,x.shape,har_source.shape) + for i in range(self.num_upsamples): + x = F.leaky_relu(x, LRELU_SLOPE) + # print(3,x.shape) + x = self.ups[i](x) + x_source = self.noise_convs[i](har_source) + # print(4,x_source.shape,har_source.shape,x.shape) + x = x + x_source + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + print('Removing weight norm...') + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + remove_weight_norm(self.conv_pre) + remove_weight_norm(self.conv_post) + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList([ + norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), + norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), + norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), + norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), + norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), + ]) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, periods=None): + super(MultiPeriodDiscriminator, self).__init__() + self.periods = periods if periods is not None else [2, 3, 5, 7, 11] + self.discriminators = nn.ModuleList() + for period in self.periods: + self.discriminators.append(DiscriminatorP(period)) + + def forward(self, y, y_hat): + y_d_rs = [] + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + y_d_rs.append(y_d_r) + fmap_rs.append(fmap_r) + y_d_gs.append(y_d_g) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList([ + norm_f(Conv1d(1, 128, 15, 1, padding=7)), + norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), + norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), + norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ]) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class MultiScaleDiscriminator(torch.nn.Module): + def __init__(self): + super(MultiScaleDiscriminator, self).__init__() + self.discriminators = nn.ModuleList([ + DiscriminatorS(use_spectral_norm=True), + DiscriminatorS(), + DiscriminatorS(), + ]) + self.meanpools = nn.ModuleList([ + AvgPool1d(4, 2, padding=2), + AvgPool1d(4, 2, padding=2) + ]) + + def forward(self, y, y_hat): + y_d_rs = [] + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + if i != 0: + y = self.meanpools[i - 1](y) + y_hat = self.meanpools[i - 1](y_hat) + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + y_d_rs.append(y_d_r) + fmap_rs.append(fmap_r) + y_d_gs.append(y_d_g) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +def feature_loss(fmap_r, fmap_g): + loss = 0 + for dr, dg in zip(fmap_r, fmap_g): + for rl, gl in zip(dr, dg): + loss += torch.mean(torch.abs(rl - gl)) + + return loss * 2 + + +def discriminator_loss(disc_real_outputs, disc_generated_outputs): + loss = 0 + r_losses = [] + g_losses = [] + for dr, dg in zip(disc_real_outputs, disc_generated_outputs): + r_loss = torch.mean((1 - dr) ** 2) + g_loss = torch.mean(dg ** 2) + loss += (r_loss + g_loss) + r_losses.append(r_loss.item()) + g_losses.append(g_loss.item()) + + return loss, r_losses, g_losses + + +def generator_loss(disc_outputs): + loss = 0 + gen_losses = [] + for dg in disc_outputs: + l = torch.mean((1 - dg) ** 2) + gen_losses.append(l) + loss += l + + return loss, gen_losses diff --git a/vdecoder/hifigan/nvSTFT.py b/vdecoder/hifigan/nvSTFT.py new file mode 100644 index 0000000000000000000000000000000000000000..88597d62a505715091f9ba62d38bf0a85a31b95a --- /dev/null +++ b/vdecoder/hifigan/nvSTFT.py @@ -0,0 +1,111 @@ +import math +import os +os.environ["LRU_CACHE_CAPACITY"] = "3" +import random +import torch +import torch.utils.data +import numpy as np +import librosa +from librosa.util import normalize +from librosa.filters import mel as librosa_mel_fn +from scipy.io.wavfile import read +import soundfile as sf + +def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False): + sampling_rate = None + try: + data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile. + except Exception as ex: + print(f"'{full_path}' failed to load.\nException:") + print(ex) + if return_empty_on_exception: + return [], sampling_rate or target_sr or 32000 + else: + raise Exception(ex) + + if len(data.shape) > 1: + data = data[:, 0] + assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension) + + if np.issubdtype(data.dtype, np.integer): # if audio data is type int + max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX + else: # if audio data is type fp32 + max_mag = max(np.amax(data), -np.amin(data)) + max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32 + + data = torch.FloatTensor(data.astype(np.float32))/max_mag + + if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except + return [], sampling_rate or target_sr or 32000 + if target_sr is not None and sampling_rate != target_sr: + data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr)) + sampling_rate = target_sr + + return data, sampling_rate + +def dynamic_range_compression(x, C=1, clip_val=1e-5): + return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) + +def dynamic_range_decompression(x, C=1): + return np.exp(x) / C + +def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): + return torch.log(torch.clamp(x, min=clip_val) * C) + +def dynamic_range_decompression_torch(x, C=1): + return torch.exp(x) / C + +class STFT(): + def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5): + self.target_sr = sr + + self.n_mels = n_mels + self.n_fft = n_fft + self.win_size = win_size + self.hop_length = hop_length + self.fmin = fmin + self.fmax = fmax + self.clip_val = clip_val + self.mel_basis = {} + self.hann_window = {} + + def get_mel(self, y, center=False): + sampling_rate = self.target_sr + n_mels = self.n_mels + n_fft = self.n_fft + win_size = self.win_size + hop_length = self.hop_length + fmin = self.fmin + fmax = self.fmax + clip_val = self.clip_val + + if torch.min(y) < -1.: + print('min value is ', torch.min(y)) + if torch.max(y) > 1.: + print('max value is ', torch.max(y)) + + if fmax not in self.mel_basis: + mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax) + self.mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) + self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device) + + y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_length)/2), int((n_fft-hop_length)/2)), mode='reflect') + y = y.squeeze(1) + + spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)], + center=center, pad_mode='reflect', normalized=False, onesided=True) + # print(111,spec) + spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) + # print(222,spec) + spec = torch.matmul(self.mel_basis[str(fmax)+'_'+str(y.device)], spec) + # print(333,spec) + spec = dynamic_range_compression_torch(spec, clip_val=clip_val) + # print(444,spec) + return spec + + def __call__(self, audiopath): + audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr) + spect = self.get_mel(audio.unsqueeze(0)).squeeze(0) + return spect + +stft = STFT() diff --git a/vdecoder/hifigan/utils.py b/vdecoder/hifigan/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..84bff024f4d2e2de194b2a88ee7bbe5f0d33f67c --- /dev/null +++ b/vdecoder/hifigan/utils.py @@ -0,0 +1,68 @@ +import glob +import os +import matplotlib +import torch +from torch.nn.utils import weight_norm +matplotlib.use("Agg") +import matplotlib.pylab as plt + + +def plot_spectrogram(spectrogram): + fig, ax = plt.subplots(figsize=(10, 2)) + im = ax.imshow(spectrogram, aspect="auto", origin="lower", + interpolation='none') + plt.colorbar(im, ax=ax) + + fig.canvas.draw() + plt.close() + + return fig + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def apply_weight_norm(m): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + weight_norm(m) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size*dilation - dilation)/2) + + +def load_checkpoint(filepath, device): + assert os.path.isfile(filepath) + print("Loading '{}'".format(filepath)) + checkpoint_dict = torch.load(filepath, map_location=device) + print("Complete.") + return checkpoint_dict + + +def save_checkpoint(filepath, obj): + print("Saving checkpoint to {}".format(filepath)) + torch.save(obj, filepath) + print("Complete.") + + +def del_old_checkpoints(cp_dir, prefix, n_models=2): + pattern = os.path.join(cp_dir, prefix + '????????') + cp_list = glob.glob(pattern) # get checkpoint paths + cp_list = sorted(cp_list)# sort by iter + if len(cp_list) > n_models: # if more than n_models models are found + for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models + open(cp, 'w').close()# empty file contents + os.unlink(cp)# delete file (move to trash when using Colab) + + +def scan_checkpoint(cp_dir, prefix): + pattern = os.path.join(cp_dir, prefix + '????????') + cp_list = glob.glob(pattern) + if len(cp_list) == 0: + return None + return sorted(cp_list)[-1] +