Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import re | |
import shap | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForSequenceClassification, | |
TextClassificationPipeline, | |
) | |
tokenizer = AutoTokenizer.from_pretrained("chinhon/fake_tweet_detect") | |
model = AutoModelForSequenceClassification.from_pretrained("chinhon/fake_tweet_detect") | |
tweet_detector = TextClassificationPipeline(model=model, tokenizer=tokenizer) | |
# tweak the extent of text cleaning as you wish | |
def clean_text(text): | |
text = re.sub(r"http\S+", "", text) | |
text = re.sub(r"\n", " ", text) | |
text = re.sub(r"\'t", " not", text) # Change 't to 'not' | |
text = re.sub(r"(@.*?)[\s]", " ", text) # Remove @name | |
text = re.sub(r"$\d+\W+|\b\d+\b|\W+\d+$", " ", text) # remove digits | |
text = re.sub(r"[^\w\s\#]", "", text) # remove special characters except hashtags | |
text = text.strip(" ") | |
text = re.sub( | |
" +", " ", text | |
).strip() # get rid of multiple spaces and replace with a single | |
return text | |
def tweet_detect(text): | |
data = [clean_text(text)] | |
prediction = tweet_detector(data) | |
pred_label = [x.get("label") for x in prediction] | |
if pred_label == ["LABEL_1"]: | |
return "Fake Tweet" | |
elif pred_label == ["LABEL_0"]: | |
return "Real Tweet" | |
#Define Gradio interface | |
gradio_ui = gr.Interface( | |
fn=tweet_detect, | |
title="Detect Fake Tweets", | |
description="Enter a tweet and see if the transformer model can identify if it was written by state-backed trolls. DISCLAIMER: While the model was fine tuned on 100k real and troll tweets, and achieved high accuracy in my tests, its performance drops significantly against the day-to-day barrage of content on Twitter. As such, this app is intended as an example for understanding the limits of AI/ML in highly complex problems like fake media detection, and not as a final arbiter of whether someone's tweet is real or not.", | |
inputs=gr.inputs.Textbox(lines=10, label="Paste tweet text here [English Only]"), | |
outputs=gr.outputs.Label(type="auto", label="Prediction"), | |
interpretation="shap", | |
enable_queue=True | |
) | |
gradio_ui.launch() | |