S2SCascadeDemo / app.py
chinmaydan's picture
changed fp16 options to false for whisper
010e32d
raw
history blame
10.8 kB
# imports
import os
import sys
import gradio as gr
import whisper
import torch
import traceback
import shutil
import yaml
import re
from pydub import AudioSegment
from huggingface_hub import snapshot_download
import json
import requests
import wave
from pynvml import *
import time
import mRASPloader
torch.cuda.empty_cache()
# TTS header and url
headers = {"Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoiYTI5NDFhMmEtYzA5ZS00YTcyLWI5ZGItODM5ODEzZDIwMGEwIiwidHlwZSI6ImFwaV90b2tlbiJ9.StBap5nQtNqjh1BMz9DledR5tg5FTWdUMVBrDwY6DjY"}
url ="https://api.edenai.run/v2/audio/text_to_speech"
# the model we are using for ASR, options are small, medium, large and largev2 (large and largev2 don't fit on huggingface cpu)
model = whisper.load_model("medium")
# A table to look up all the languages
language_id_lookup = {
"Arabic" : "ar",
"English" : "en",
"Chinese" : "zh",
"Spanish" : "es",
"Russian" : "ru",
"French" : "fr",
"German" : "de",
"Italian" : "it",
"Netherlands": "nl",
"Portuguese": "pt",
"Romanian" : "ro",
}
# A lookup table for ConST
LANG_GEN_SETUPS = {
"de": {"beam": 10, "lenpen": 0.7},
"es": {"beam": 10, "lenpen": 0.1},
"fr": {"beam": 10, "lenpen": 1.0},
"it": {"beam": 10, "lenpen": 0.5},
"nl": {"beam": 10, "lenpen": 0.4},
"pt": {"beam": 10, "lenpen": 0.9},
"ro": {"beam": 10, "lenpen": 1.0},
"ru": {"beam": 10, "lenpen": 0.3},
}
# A lookup table for TTS (edenai)
lang2voice = {
"Arabic" : ["ar-XA", "MALE"],
"English" : ["en-US", "FEMALE"],
"Chinese" : ["cmn-TW", "MALE"],
"Spanish" : ["es-ES","MALE"],
"Russian" : ["ru-RU,", "FEMALE"],
"French" : ["fr-FR", "FEMALE"],
"German" : ["de-DE", "MALE"],
"Italian" : ["it-IT", "FEMALE"],
"Netherlands": ["nl-NL", "MALE"],
"Portuguese": ["pt-BR", "FEMALE"],
"Romanian" : ["ro-RO", "MALE"],
}
# load whisper
os.system("pip install git+https://github.com/openai/whisper.git")
# load mRASP2
# load ConST
#os.system("git clone https://github.com/ReneeYe/ConST")
#os.system("mv ConST ConST_git")
#os.system('mv -n ConST_git/* ./')
#os.system("rm -rf ConST_git")
#os.system("pip3 install --editable ./")
#os.system("mkdir -p data checkpoint")
def restrict_src_options(model_type):
if model_type == 'Whisper+mRASP2':
return gr.Dropdown.update(visible= True), gr.Dropdown.update(visible= True), gr.Dropdown.update(visible= False), gr.Button.update(visible= True)
else:
return gr.Dropdown.update(visible= False), gr.Dropdown.update(visible= False), gr.Dropdown.update(visible= True), gr.Button.update(visible= False)
def switchLang(src_lang, tgt_lang):
return tgt_lang, src_lang
# The predict function. audio, language and mic_audio are all parameters directly passed by gradio
# which means they are user inputted. They are specified in gr.inputs[] block at the bottom. The
# gr.outputs[] block will specify the output type.
def predict(audio, src_language, tgt_language_mRASP, tgt_language_ConST, model_type, mic_audio=None):
# checks if mic_audio is used, otherwise feeds model uploaded audio
start_predict = time.time()
if mic_audio is not None:
input_audio = mic_audio
elif audio is not None:
input_audio = audio
else:
return "(please provide audio)"
transcript = "Undefined"
translation = "Undefined"
if model_type == 'Whisper+mRASP2':
transcript, translation = predictWithmRASP2(input_audio, src_language, tgt_language_mRASP)
language = tgt_language_mRASP
elif model_type == 'ConST':
predictWithConST(input_audio, tgt_language_ConST)
language = tgt_language_ConST
start_tts = time.time()
payload={
"providers": "google",
"language": lang2voice[language][0],
"option": lang2voice[language][1],
"text": translation,
}
response = requests.post(url, json=payload, headers=headers)
result = json.loads(response.text)
os.system('wget -O output.wav "{}"'.format(result['google']['audio_resource_url']))
tts_time = time.time() - start_tts
print(f"Took {tts_time} to do text to speech")
total_time = time.time() - start_predict
print(f"Took {total_time} to do entire prediction")
return transcript, translation, "output.wav"
def predictWithmRASP2(input_audio, src_language, tgt_language):
print("Called predictWithmRASP2")
# Uses the model's preprocessing methods to preprocess audio
asr_start = time.time()
audio = whisper.load_audio(input_audio)
audio = whisper.pad_or_trim(audio)
# Calculates the mel frequency spectogram
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# if model is supposed to detect language, set outLanguage to None
# otherwise set to specified language
if(src_language == "Detect Language"):
src_language = None
else:
src_language = language_id_lookup[src_language.split()[0]]
tgt_language = language_id_lookup[tgt_language.split()[0]]
# Runs the audio through the whisper model and gets the DecodingResult object, which has the features:
# audio_features (Tensor), language, language_probs, tokens, text, avg_logprob, no_speech_prob, temperature, compression_ratio
# asr
options = whisper.DecodingOptions(fp16 = False, language = src_language)
result = whisper.decode(model, mel, options)
if src_language is None:
src_language = result.language
transcript = result.text
asr_time = time.time() - asr_start
mt_start_time = time.time()
# mt
with open("input." + src_language, 'w') as w:
w.write(result.text)
with open("input." + tgt_language, 'w') as w:
w.write('LANG_TOK_' + src_language.upper())
#os.system("python3 fairseq/fairseq_cli/preprocess.py --dataset-impl raw \
# --srcdict bpe_vocab --tgtdict bpe_vocab --testpref input -s {} -t {}".format( \
# src_language, tgt_language))
#previous way of doing it
old_way = """os.system("python3 fairseq/fairseq_cli/interactive.py ./data-bin \
--user-dir mcolt \
-s zh \
-t en \
--skip-invalid-size-inputs-valid-test \
--path {} \
--max-tokens 1024 \
--task translation_w_langtok \
--lang-prefix-tok \"LANG_TOK_{}\" \
--max-source-positions 1024 \
--max-target-positions 1024 \
--nbest 1 \
--bpe subword_nmt \
--bpe-codes codes.bpe.32000 \
--post-process --tokenizer moses \
--input input.{} | grep -E '[D]-[0-9]+' > output".format(
model_name, tgt_language.upper(), src_language))"""
translation = mRASPloader.infer(cfg, models, task, max_positions, tokenizer, bpe, use_cuda, generator, src_dict, tgt_dict, align_dict, start_time, start_id, src_language, tgt_language)
translation = (' '.join(translation.split(' ')[1:])).strip()
mt_time = time.time() - mt_start_time
# Returns the text
return transcript, translation
title = "Demo for Speech Translation (Whisper+mRASP2 and ConST)"
description = """
<b>How to use:</b> Upload an audio file or record using the microphone. The audio is either processed by being inputted into the openai whisper model for transcription
and then mRASP2 for translation, or by ConST, which directly takes the audio input and produces text in the desired language. When using Whisper+mRASP2,
you can ask the model to detect a language, it will tell you what language it detected. ConST only supports translating from English to another language.
"""
# The gradio block
cfg = mRASPloader.createCFG()
print(cfg)
models, task, max_positions, tokenizer, bpe, use_cuda, generator, src_dict, tgt_dict, align_dict, start_time, start_id = mRASPloader.loadmRASP2(cfg)
demo = gr.Blocks()
with demo:
gr.Markdown("# " + title)
gr.Markdown("###" + description)
with gr.Row():
with gr.Column():
model_type = gr.Dropdown(['Whisper+mRASP2'], type = "value", value = 'Whisper+mRASP2', label = "Select the model you want to use.")
audio_file = gr.Audio(label="Upload Speech", source="upload", type="filepath")
src_language = gr.Dropdown(['Arabic',
'Chinese',
'English',
'Spanish',
'Russian',
'French',
'Detect Language'], value = 'English', label="Select the language of input")
tgt_language_mRASP = gr.Dropdown(['Arabic',
'Chinese',
'English',
'Spanish',
'Russian',
'French'], type="value", value='English', label="Select the language of output")
tgt_language_ConST = gr.Dropdown(['German',
'Spanish',
'French',
'Italian',
'Netherlands',
'Portugese',
'Romanian',
'Russian'], type = 'value', value='German', label="Select the language of output", visible= False)
switch_lang_button = gr.Button("Switch input and output languages")
mic_audio = gr.Audio(label="Record Speech", source="microphone", type="filepath")
model_type.change(fn = restrict_src_options, inputs=[model_type], outputs=[src_language, tgt_language_mRASP, tgt_language_ConST, switch_lang_button])
submit_button = gr.Button("Submit")
with gr.Column():
transcript = gr.Text(label= "Transcription")
translate = gr.Text(label= "Translation")
translated_speech = gr.Audio(label="Translation Speech")
submit_button.click(fn = predict, inputs=[audio_file, src_language, tgt_language_mRASP, tgt_language_ConST, model_type, mic_audio], outputs=[transcript, translate, translated_speech])
switch_lang_button.click(switchLang, [src_language, tgt_language_mRASP], [src_language, tgt_language_mRASP])
demo.launch()