Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app_anno.py +146 -0
- requirements.txt +5 -0
app_anno.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from langchain import PromptTemplate, HuggingFaceHub, LLMChain
|
| 4 |
+
from langchain.llms import OpenAI
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def extract_positive_negative(text):
|
| 11 |
+
pattern = r'\b(?:positive|negative)\b'
|
| 12 |
+
result = re.findall(pattern, text)
|
| 13 |
+
return result
|
| 14 |
+
|
| 15 |
+
def classify_text(text, llm_chain, api):
|
| 16 |
+
if api == "HuggingFace":
|
| 17 |
+
classification = llm_chain.run(str(text))
|
| 18 |
+
elif api == "OpenAI":
|
| 19 |
+
classification = llm_chain.run(str(text))
|
| 20 |
+
classification = re.sub(r'\s', '', classification)
|
| 21 |
+
return classification.lower()
|
| 22 |
+
|
| 23 |
+
def classify_csv(df, llm_chain, api):
|
| 24 |
+
df["label_gold"] = df["label"]
|
| 25 |
+
del df["label"]
|
| 26 |
+
df["label_pred"] = df["text"].apply(classify_text, llm_chain=llm_chain, api=api)
|
| 27 |
+
return df
|
| 28 |
+
|
| 29 |
+
def classify_csv_zero(zero_file, llm_chain, api):
|
| 30 |
+
df = pd.read_csv(zero_file, sep=';')
|
| 31 |
+
df["label"] = df["text"].apply(classify_text, llm_chain=llm_chain, api=api)
|
| 32 |
+
return df
|
| 33 |
+
|
| 34 |
+
def evaluate_performance(df):
|
| 35 |
+
merged_df = df
|
| 36 |
+
correct_preds = sum(merged_df["label_gold"] == merged_df["label_pred"])
|
| 37 |
+
total_preds = len(merged_df)
|
| 38 |
+
percentage_overlap = correct_preds / total_preds * 100
|
| 39 |
+
|
| 40 |
+
return percentage_overlap
|
| 41 |
+
|
| 42 |
+
def display_home():
|
| 43 |
+
st.write("Please select an API and a model to classify the text. We currently support HuggingFace and OpenAI.")
|
| 44 |
+
api = st.selectbox("Select an API", ["HuggingFace", "OpenAI"])
|
| 45 |
+
|
| 46 |
+
if api == "HuggingFace":
|
| 47 |
+
model = st.selectbox("Select a model", ["google/flan-t5-xl", "databricks/dolly-v1-6b"])
|
| 48 |
+
api_key_hug = st.text_input("HuggingFace API Key")
|
| 49 |
+
elif api == "OpenAI":
|
| 50 |
+
model = None
|
| 51 |
+
api_key_openai = st.text_input("OpenAI API Key")
|
| 52 |
+
|
| 53 |
+
st.write("Please select a temperature for the model. The higher the temperature, the more creative the model will be.")
|
| 54 |
+
temperature = st.slider("Set the temperature", min_value=0.0, max_value=1.0, value=0.0, step=0.01)
|
| 55 |
+
|
| 56 |
+
st.write("We provide two different setups for the annotation task. In the first setup (**Test**), you can upload a CSV file with gold labels and evaluate the performance of the model. In the second setup (**Zero-Shot**), you can upload a CSV file without gold labels and use the model to classify the text.")
|
| 57 |
+
setup = st.selectbox("Setup", ["Test", "Zero-Shot"])
|
| 58 |
+
|
| 59 |
+
if setup == "Test":
|
| 60 |
+
gold_file = st.file_uploader("Upload Gold Labels CSV file with a text and a label column", type=["csv"])
|
| 61 |
+
elif setup == "Zero-Shot":
|
| 62 |
+
gold_file = None
|
| 63 |
+
zero_file = st.file_uploader("Upload CSV file with a text column", type=["csv"])
|
| 64 |
+
|
| 65 |
+
st.write("Please enter the prompt template below. You can use the following variables: {text} (text to classify).")
|
| 66 |
+
prompt_template = st.text_area("Enter your task description", """Instruction: Identify the sentiment of a text. Please read the text and provide one of these responses: "positive" or "negative".\nText to classify in "positive" or "negative": {text}\nAnswer:""", height=200)
|
| 67 |
+
|
| 68 |
+
classify_button = st.button("Run Classification/ Annotation")
|
| 69 |
+
|
| 70 |
+
if classify_button:
|
| 71 |
+
if prompt_template:
|
| 72 |
+
prompt = PromptTemplate(
|
| 73 |
+
template=prompt_template,
|
| 74 |
+
input_variables=["text"]
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
if api == "HuggingFace":
|
| 78 |
+
if api_key_hug:
|
| 79 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key_hug
|
| 80 |
+
llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id=model, model_kwargs={"temperature": temperature, "max_length": 128}))
|
| 81 |
+
elif not api_key_hug:
|
| 82 |
+
st.warning("Please enter your HuggingFace API key to classify the text.")
|
| 83 |
+
elif api == "OpenAI":
|
| 84 |
+
if api_key_openai:
|
| 85 |
+
os.environ["OPENAI_API_KEY"] = api_key_openai
|
| 86 |
+
llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=temperature))
|
| 87 |
+
elif not api_key_openai:
|
| 88 |
+
st.warning("Please enter your OpenAI API key to classify the text.")
|
| 89 |
+
|
| 90 |
+
if setup == "Zero-Shot":
|
| 91 |
+
if zero_file is not None:
|
| 92 |
+
df_predicted = classify_csv_zero(zero_file, llm_chain, api)
|
| 93 |
+
st.write(df_predicted)
|
| 94 |
+
st.download_button(
|
| 95 |
+
label="Download CSV",
|
| 96 |
+
data=df_predicted.to_csv(index=False),
|
| 97 |
+
file_name="classified_zero-shot_data.csv",
|
| 98 |
+
mime="text/csv"
|
| 99 |
+
)
|
| 100 |
+
elif setup == "Test":
|
| 101 |
+
if gold_file is not None:
|
| 102 |
+
df = pd.read_csv(gold_file, sep=';')
|
| 103 |
+
if "label" not in df.columns:
|
| 104 |
+
st.warning("Please make sure that the gold labels CSV file contains a column named 'label'.")
|
| 105 |
+
else:
|
| 106 |
+
df = classify_csv(df, llm_chain, api)
|
| 107 |
+
st.write(df)
|
| 108 |
+
st.download_button(
|
| 109 |
+
label="Download CSV",
|
| 110 |
+
data=df.to_csv(index=False),
|
| 111 |
+
file_name="classified_test_data.csv",
|
| 112 |
+
mime="text/csv"
|
| 113 |
+
)
|
| 114 |
+
percentage_overlap = evaluate_performance(df)
|
| 115 |
+
st.write("**Performance Evaluation**")
|
| 116 |
+
st.write(f"Percentage overlap between gold labels and predicted labels: {percentage_overlap:.2f}%")
|
| 117 |
+
elif gold_file is None:
|
| 118 |
+
st.warning("Please upload a gold labels CSV file to evaluate the performance of the model.")
|
| 119 |
+
elif not prompt:
|
| 120 |
+
st.warning("Please enter a prompt question to classify the text.")
|
| 121 |
+
|
| 122 |
+
def main():
|
| 123 |
+
st.set_page_config(page_title="PromptCards Playground", page_icon=":pencil2:")
|
| 124 |
+
st.title("AInnotator")
|
| 125 |
+
|
| 126 |
+
# add a menu to the sidebar
|
| 127 |
+
if "current_page" not in st.session_state:
|
| 128 |
+
st.session_state.current_page = "homepage"
|
| 129 |
+
|
| 130 |
+
# Initialize selected_prompt in session_state if not set
|
| 131 |
+
if "selected_prompt" not in st.session_state:
|
| 132 |
+
st.session_state.selected_prompt = ""
|
| 133 |
+
|
| 134 |
+
# Add a menu
|
| 135 |
+
menu = ["Homepage", "Playground", "Prompt Archive", "Annotator", "About"]
|
| 136 |
+
st.sidebar.title("About")
|
| 137 |
+
st.sidebar.write("AInnotator 🤖🏷️ is a tool for creating artificial labels/ annotations. It is based on the concept of PromptCards, which are small, self-contained descriptions of a task that can be used to generate labels for a wide range of NLP tasks. Check out the GitHub repository and the PromptCards Archive for more information.")
|
| 138 |
+
st.sidebar.write("---")
|
| 139 |
+
st.sidebar.write("Check out the [PromptCards archive]() to find a wide range of prompts for different NLP tasks.")
|
| 140 |
+
st.sidebar.write("---")
|
| 141 |
+
st.sidebar.write("Made with ❤️ and 🤖.")
|
| 142 |
+
|
| 143 |
+
display_home()
|
| 144 |
+
|
| 145 |
+
if __name__ == "__main__":
|
| 146 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
pandas
|
| 3 |
+
streamlit
|
| 4 |
+
transformers
|
| 5 |
+
sklearn
|