doing create_a_model method
Browse files
app.py
CHANGED
@@ -203,7 +203,7 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
|
|
203 |
print("Data loaded")
|
204 |
|
205 |
print("Loading model")
|
206 |
-
model_loading_name = "%s_%i_planet_detection" % (model_name, num_channels)
|
207 |
|
208 |
if 'eff' in model_name:
|
209 |
hparams = effnet_hparams[num_channels]
|
@@ -220,21 +220,20 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
|
|
220 |
depth_mult=hparams.depth_mult,
|
221 |
)
|
222 |
|
223 |
-
config.save_pretrained(model_loading_name)
|
224 |
-
config = EfficientNetConfig.from_pretrained(model_loading_name)
|
225 |
|
226 |
-
model = EfficientNetPreTrained(config)
|
227 |
|
|
|
228 |
# config.register_for_auto_class()
|
229 |
# model.register_for_auto_class("AutoModelForImageClassification")
|
230 |
-
|
231 |
-
|
232 |
-
model.model.load_state_dict(pretrained_model.state_dict())
|
233 |
-
|
234 |
# pipeline = pipeline(task="image-classification", model=model_loading_name)
|
235 |
-
|
236 |
# model = load_model(model_name, activation=True)
|
237 |
# model = AutoModel.from_pretrained(model_loading_name)
|
|
|
238 |
print("Model loaded")
|
239 |
|
240 |
print("Looking at activations")
|
|
|
203 |
print("Data loaded")
|
204 |
|
205 |
print("Loading model")
|
206 |
+
model_loading_name = model_path + "%s_%i_planet_detection" % (model_name, num_channels)
|
207 |
|
208 |
if 'eff' in model_name:
|
209 |
hparams = effnet_hparams[num_channels]
|
|
|
220 |
depth_mult=hparams.depth_mult,
|
221 |
)
|
222 |
|
223 |
+
config.save_pretrained(save_directory=model_loading_name)
|
224 |
+
# config = EfficientNetConfig.from_pretrained(model_loading_name)
|
225 |
|
226 |
+
model = EfficientNetPreTrained.from_pretrained(model_loading_name + '/config.json')
|
227 |
|
228 |
+
# model = EfficientNetPreTrained(config)
|
229 |
# config.register_for_auto_class()
|
230 |
# model.register_for_auto_class("AutoModelForImageClassification")
|
231 |
+
# pretrained_model = timm.create_model(model_loading_name, pretrained=True)
|
232 |
+
# model.model.load_state_dict(pretrained_model.state_dict())
|
|
|
|
|
233 |
# pipeline = pipeline(task="image-classification", model=model_loading_name)
|
|
|
234 |
# model = load_model(model_name, activation=True)
|
235 |
# model = AutoModel.from_pretrained(model_loading_name)
|
236 |
+
|
237 |
print("Model loaded")
|
238 |
|
239 |
print("Looking at activations")
|