jpterry commited on
Commit
009d5db
·
1 Parent(s): b971cba

doing create_a_model method

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -203,7 +203,7 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
203
  print("Data loaded")
204
 
205
  print("Loading model")
206
- model_loading_name = "%s_%i_planet_detection" % (model_name, num_channels)
207
 
208
  if 'eff' in model_name:
209
  hparams = effnet_hparams[num_channels]
@@ -220,21 +220,20 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
220
  depth_mult=hparams.depth_mult,
221
  )
222
 
223
- config.save_pretrained(model_loading_name)
224
- config = EfficientNetConfig.from_pretrained(model_loading_name)
225
 
226
- model = EfficientNetPreTrained(config)
227
 
 
228
  # config.register_for_auto_class()
229
  # model.register_for_auto_class("AutoModelForImageClassification")
230
-
231
- pretrained_model = timm.create_model(model_loading_name, pretrained=True)
232
- model.model.load_state_dict(pretrained_model.state_dict())
233
-
234
  # pipeline = pipeline(task="image-classification", model=model_loading_name)
235
-
236
  # model = load_model(model_name, activation=True)
237
  # model = AutoModel.from_pretrained(model_loading_name)
 
238
  print("Model loaded")
239
 
240
  print("Looking at activations")
 
203
  print("Data loaded")
204
 
205
  print("Loading model")
206
+ model_loading_name = model_path + "%s_%i_planet_detection" % (model_name, num_channels)
207
 
208
  if 'eff' in model_name:
209
  hparams = effnet_hparams[num_channels]
 
220
  depth_mult=hparams.depth_mult,
221
  )
222
 
223
+ config.save_pretrained(save_directory=model_loading_name)
224
+ # config = EfficientNetConfig.from_pretrained(model_loading_name)
225
 
226
+ model = EfficientNetPreTrained.from_pretrained(model_loading_name + '/config.json')
227
 
228
+ # model = EfficientNetPreTrained(config)
229
  # config.register_for_auto_class()
230
  # model.register_for_auto_class("AutoModelForImageClassification")
231
+ # pretrained_model = timm.create_model(model_loading_name, pretrained=True)
232
+ # model.model.load_state_dict(pretrained_model.state_dict())
 
 
233
  # pipeline = pipeline(task="image-classification", model=model_loading_name)
 
234
  # model = load_model(model_name, activation=True)
235
  # model = AutoModel.from_pretrained(model_loading_name)
236
+
237
  print("Model loaded")
238
 
239
  print("Looking at activations")