got rid of more print statements
Browse files
app.py
CHANGED
@@ -122,18 +122,17 @@ def get_activations(model, image: list, model_name: str,
|
|
122 |
temp_image = model.features[i](temp_image)
|
123 |
if i in activation_indices[model_name]:
|
124 |
layer_outputs[i] = image
|
125 |
-
print(i, layer_outputs[i].shape)
|
126 |
if i == max(activation_indices[model_name]):
|
127 |
break
|
128 |
output = model(image).detach().cpu().numpy()
|
129 |
-
print(output)
|
130 |
# print(model(image), model.model(image))
|
131 |
|
132 |
image = image.detach().cpu().numpy()
|
133 |
output_1 = layer_outputs[activation_indices[model_name][0]].detach().cpu().numpy()
|
134 |
output_2 = layer_outputs[activation_indices[model_name][1]].detach().cpu().numpy()
|
135 |
|
136 |
-
print(image.shape, output.shape, output_1.shape, output_2.shape)
|
137 |
|
138 |
# get activations
|
139 |
# output_1 = outputs[1]
|
@@ -142,6 +141,7 @@ def get_activations(model, image: list, model_name: str,
|
|
142 |
# get prediction
|
143 |
# output = outputs[0][0]
|
144 |
output = special.softmax(output)
|
|
|
145 |
|
146 |
# sum over velocity channels
|
147 |
if channel == 0:
|
@@ -231,7 +231,7 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
|
|
231 |
|
232 |
print("Running %s for %i channels" % (model_name, num_channels))
|
233 |
print("Loading data")
|
234 |
-
print(image)
|
235 |
|
236 |
image = np.load(image.name, allow_pickle=True)
|
237 |
image = image.astype(np.float32)
|
@@ -296,7 +296,7 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
|
|
296 |
# print(model_url)
|
297 |
|
298 |
loaded = torch.load(model_url, map_location='cpu', )
|
299 |
-
print(loaded.keys())
|
300 |
|
301 |
model.load_state_dict(loaded['state_dict'])
|
302 |
# print(model)
|
@@ -317,13 +317,15 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
|
|
317 |
channel=input_channel,
|
318 |
sub_mean=True)
|
319 |
print("Activations and predictions finished")
|
320 |
-
print(output)
|
321 |
|
322 |
if output[0][0] < output[0][1]:
|
323 |
output = 'Planet predicted with %.3f percent confidence' % (100*output[0][1])
|
324 |
else:
|
325 |
output = 'No planet predicted with %.3f percent confidence' % (100*output[0][0])
|
326 |
|
|
|
|
|
327 |
input_image = normalize_array(input_image)
|
328 |
activation_1 = normalize_array(activation_1)
|
329 |
activation_2 = normalize_array(activation_2)
|
|
|
122 |
temp_image = model.features[i](temp_image)
|
123 |
if i in activation_indices[model_name]:
|
124 |
layer_outputs[i] = image
|
125 |
+
# print(i, layer_outputs[i].shape)
|
126 |
if i == max(activation_indices[model_name]):
|
127 |
break
|
128 |
output = model(image).detach().cpu().numpy()
|
|
|
129 |
# print(model(image), model.model(image))
|
130 |
|
131 |
image = image.detach().cpu().numpy()
|
132 |
output_1 = layer_outputs[activation_indices[model_name][0]].detach().cpu().numpy()
|
133 |
output_2 = layer_outputs[activation_indices[model_name][1]].detach().cpu().numpy()
|
134 |
|
135 |
+
# print(image.shape, output.shape, output_1.shape, output_2.shape)
|
136 |
|
137 |
# get activations
|
138 |
# output_1 = outputs[1]
|
|
|
141 |
# get prediction
|
142 |
# output = outputs[0][0]
|
143 |
output = special.softmax(output)
|
144 |
+
print(output)
|
145 |
|
146 |
# sum over velocity channels
|
147 |
if channel == 0:
|
|
|
231 |
|
232 |
print("Running %s for %i channels" % (model_name, num_channels))
|
233 |
print("Loading data")
|
234 |
+
# print(image)
|
235 |
|
236 |
image = np.load(image.name, allow_pickle=True)
|
237 |
image = image.astype(np.float32)
|
|
|
296 |
# print(model_url)
|
297 |
|
298 |
loaded = torch.load(model_url, map_location='cpu', )
|
299 |
+
# print(loaded.keys())
|
300 |
|
301 |
model.load_state_dict(loaded['state_dict'])
|
302 |
# print(model)
|
|
|
317 |
channel=input_channel,
|
318 |
sub_mean=True)
|
319 |
print("Activations and predictions finished")
|
320 |
+
# print(output)
|
321 |
|
322 |
if output[0][0] < output[0][1]:
|
323 |
output = 'Planet predicted with %.3f percent confidence' % (100*output[0][1])
|
324 |
else:
|
325 |
output = 'No planet predicted with %.3f percent confidence' % (100*output[0][0])
|
326 |
|
327 |
+
print(output)
|
328 |
+
|
329 |
input_image = normalize_array(input_image)
|
330 |
activation_1 = normalize_array(activation_1)
|
331 |
activation_2 = normalize_array(activation_2)
|