jpterry commited on
Commit
4cddfc0
·
1 Parent(s): 0df6dfd

trying to figure out how to load custom model

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -8,7 +8,7 @@ from PIL import Image
8
  from scipy import special
9
  import sys
10
  from types import SimpleNamespace
11
- from transformers import AutoModel
12
  import torch
13
 
14
  # sys.path.insert(1, "../")
@@ -84,10 +84,10 @@ def get_activations(model, image: list, model_name: str,
84
 
85
  layer_outputs = {}
86
  for i in range(len(model.model.features)):
87
- image = model.model.features[i](image)
88
  layer_outputs[i] = image
89
  print(i, layer_outputs[i].shape)
90
- output = model.model(image).detach().cpu().numpy()
91
  output_1 = activation_indices[model_name].detach().cpu().numpy()
92
  output_2 = activation_indices[model_name].detach().cpu().numpy()
93
 
@@ -197,14 +197,13 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
197
  image = torch.from_numpy(image)
198
 
199
  assert image.shape == (1, num_channels, W, W), "Data is the wrong shape"
 
200
 
201
- # pipeline = pipeline(task="image-classification", model=model_path + "%s_%i_.pyt" % (model_name, num_channels))
202
-
203
- # model_name += '_%i' % (num_channels)
204
-
205
  model_loading_name = model_path + "%s_%i_planet_detection" % (model_name, num_channels)
206
 
207
- print("Loading model")
 
208
  # model = load_model(model_name, activation=True)
209
  model = AutoModel.from_pretrained(model_loading_name)
210
  print("Model loaded")
 
8
  from scipy import special
9
  import sys
10
  from types import SimpleNamespace
11
+ from transformers import AutoModel, pipeline
12
  import torch
13
 
14
  # sys.path.insert(1, "../")
 
84
 
85
  layer_outputs = {}
86
  for i in range(len(model.model.features)):
87
+ image = model.features[i](image)
88
  layer_outputs[i] = image
89
  print(i, layer_outputs[i].shape)
90
+ output = model(image).detach().cpu().numpy()
91
  output_1 = activation_indices[model_name].detach().cpu().numpy()
92
  output_2 = activation_indices[model_name].detach().cpu().numpy()
93
 
 
197
  image = torch.from_numpy(image)
198
 
199
  assert image.shape == (1, num_channels, W, W), "Data is the wrong shape"
200
+ print("Data loaded")
201
 
202
+ print("Loading model")
 
 
 
203
  model_loading_name = model_path + "%s_%i_planet_detection" % (model_name, num_channels)
204
 
205
+ # pipeline = pipeline(task="image-classification", model=model_loading_name)
206
+
207
  # model = load_model(model_name, activation=True)
208
  model = AutoModel.from_pretrained(model_loading_name)
209
  print("Model loaded")