trying to make custom config
Browse files- app.py +22 -4
- model_utils/efficientnet_config.py +500 -0
app.py
CHANGED
@@ -11,9 +11,10 @@ from types import SimpleNamespace
|
|
11 |
from transformers import AutoModel, pipeline
|
12 |
import torch
|
13 |
|
14 |
-
|
15 |
# from utils import model_utils, train_utils, data_utils, run_utils
|
16 |
# from model_utils import jason_regnet_maker, jason_efficientnet_maker
|
|
|
17 |
|
18 |
model_path = 'chlab/'
|
19 |
# model_path = './models/'
|
@@ -28,7 +29,7 @@ lw = 3
|
|
28 |
ps = 200
|
29 |
cmap = 'magma'
|
30 |
|
31 |
-
|
32 |
"num_classes": 2,
|
33 |
"gamma": 0.032606396652426956,
|
34 |
"lr": 0.008692971067922545,
|
@@ -39,8 +40,8 @@ effnet_61_hparams = {
|
|
39 |
"dropout": 0.027804120950575217,
|
40 |
"width_mult": 1.060782511229692,
|
41 |
"depth_mult": 0.7752918857163054,
|
42 |
-
}
|
43 |
-
|
44 |
|
45 |
# which layers to look at
|
46 |
activation_indices = {'efficientnet': [0, 3]}
|
@@ -202,6 +203,23 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
|
|
202 |
print("Loading model")
|
203 |
model_loading_name = model_path + "%s_%i_planet_detection" % (model_name, num_channels)
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
# pipeline = pipeline(task="image-classification", model=model_loading_name)
|
206 |
|
207 |
# model = load_model(model_name, activation=True)
|
|
|
11 |
from transformers import AutoModel, pipeline
|
12 |
import torch
|
13 |
|
14 |
+
sys.path.insert(1, "../")
|
15 |
# from utils import model_utils, train_utils, data_utils, run_utils
|
16 |
# from model_utils import jason_regnet_maker, jason_efficientnet_maker
|
17 |
+
from model_utils.efficientnet_config import EfficientNetConfig
|
18 |
|
19 |
model_path = 'chlab/'
|
20 |
# model_path = './models/'
|
|
|
29 |
ps = 200
|
30 |
cmap = 'magma'
|
31 |
|
32 |
+
effnet_hparams = {61: {
|
33 |
"num_classes": 2,
|
34 |
"gamma": 0.032606396652426956,
|
35 |
"lr": 0.008692971067922545,
|
|
|
40 |
"dropout": 0.027804120950575217,
|
41 |
"width_mult": 1.060782511229692,
|
42 |
"depth_mult": 0.7752918857163054,
|
43 |
+
}}
|
44 |
+
# effnet_config = SimpleNamespace(**effnet_hparams)
|
45 |
|
46 |
# which layers to look at
|
47 |
activation_indices = {'efficientnet': [0, 3]}
|
|
|
203 |
print("Loading model")
|
204 |
model_loading_name = model_path + "%s_%i_planet_detection" % (model_name, num_channels)
|
205 |
|
206 |
+
if 'eff' in model_name:
|
207 |
+
hparams = effnet_hparams[num_channels]
|
208 |
+
hparams = SimpleNamespace(**hparams)
|
209 |
+
|
210 |
+
|
211 |
+
config = EfficientNetConfig(
|
212 |
+
hparams.dropout,
|
213 |
+
num_channels=hparams.num_channels,
|
214 |
+
num_classes=hparams.num_classes,
|
215 |
+
size=hparams.size,
|
216 |
+
stochastic_depth_prob=hparams.stochastic_depth_prob,
|
217 |
+
width_mult=hparams.width_mult,
|
218 |
+
depth_mult=hparams.depth_mult,
|
219 |
+
)
|
220 |
+
|
221 |
+
config.save_pretrained(model_loading_name)
|
222 |
+
|
223 |
# pipeline = pipeline(task="image-classification", model=model_loading_name)
|
224 |
|
225 |
# model = load_model(model_name, activation=True)
|
model_utils/efficientnet_config.py
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import copy
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from functools import partial
|
9 |
+
from typing import Any, Callable, List, Optional, Sequence, Tuple, Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import Tensor, nn
|
13 |
+
from torchvision.models._utils import _make_divisible
|
14 |
+
from torchvision.ops import StochasticDepth
|
15 |
+
from torchvision.ops.misc import Conv2dNormActivation, SqueezeExcitation
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class _MBConvConfig:
|
20 |
+
expand_ratio: float
|
21 |
+
kernel: int
|
22 |
+
stride: int
|
23 |
+
input_channels: int
|
24 |
+
out_channels: int
|
25 |
+
num_layers: int
|
26 |
+
block: Callable[..., nn.Module]
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def adjust_channels(
|
30 |
+
channels: int, width_mult: float, min_value: Optional[int] = None
|
31 |
+
) -> int:
|
32 |
+
return _make_divisible(channels * width_mult, 8, min_value)
|
33 |
+
|
34 |
+
|
35 |
+
class MBConvConfig(_MBConvConfig):
|
36 |
+
# Stores information listed at Table 1 of the EfficientNet paper & Table 4 of the EfficientNetV2 paper
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
expand_ratio: float,
|
40 |
+
kernel: int,
|
41 |
+
stride: int,
|
42 |
+
input_channels: int,
|
43 |
+
out_channels: int,
|
44 |
+
num_layers: int,
|
45 |
+
width_mult: float = 1.0,
|
46 |
+
depth_mult: float = 1.0,
|
47 |
+
block: Optional[Callable[..., nn.Module]] = None,
|
48 |
+
) -> None:
|
49 |
+
input_channels = self.adjust_channels(input_channels, width_mult)
|
50 |
+
out_channels = self.adjust_channels(out_channels, width_mult)
|
51 |
+
num_layers = self.adjust_depth(num_layers, depth_mult)
|
52 |
+
if block is None:
|
53 |
+
block = MBConv
|
54 |
+
super().__init__(
|
55 |
+
expand_ratio,
|
56 |
+
kernel,
|
57 |
+
stride,
|
58 |
+
input_channels,
|
59 |
+
out_channels,
|
60 |
+
num_layers,
|
61 |
+
block,
|
62 |
+
)
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def adjust_depth(num_layers: int, depth_mult: float):
|
66 |
+
return int(math.ceil(num_layers * depth_mult))
|
67 |
+
|
68 |
+
|
69 |
+
class FusedMBConvConfig(_MBConvConfig):
|
70 |
+
# Stores information listed at Table 4 of the EfficientNetV2 paper
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
expand_ratio: float,
|
74 |
+
kernel: int,
|
75 |
+
stride: int,
|
76 |
+
input_channels: int,
|
77 |
+
out_channels: int,
|
78 |
+
num_layers: int,
|
79 |
+
block: Optional[Callable[..., nn.Module]] = None,
|
80 |
+
) -> None:
|
81 |
+
if block is None:
|
82 |
+
block = FusedMBConv
|
83 |
+
super().__init__(
|
84 |
+
expand_ratio,
|
85 |
+
kernel,
|
86 |
+
stride,
|
87 |
+
input_channels,
|
88 |
+
out_channels,
|
89 |
+
num_layers,
|
90 |
+
block,
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
class MBConv(nn.Module):
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
cnf: MBConvConfig,
|
98 |
+
stochastic_depth_prob: float,
|
99 |
+
norm_layer: Callable[..., nn.Module],
|
100 |
+
se_layer: Callable[..., nn.Module] = SqueezeExcitation,
|
101 |
+
) -> None:
|
102 |
+
super().__init__()
|
103 |
+
|
104 |
+
if not (1 <= cnf.stride <= 2):
|
105 |
+
raise ValueError("illegal stride value")
|
106 |
+
|
107 |
+
self.use_res_connect = (
|
108 |
+
cnf.stride == 1 and cnf.input_channels == cnf.out_channels
|
109 |
+
)
|
110 |
+
|
111 |
+
layers: List[nn.Module] = []
|
112 |
+
activation_layer = nn.SiLU
|
113 |
+
|
114 |
+
# expand
|
115 |
+
expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
|
116 |
+
if expanded_channels != cnf.input_channels:
|
117 |
+
layers.append(
|
118 |
+
Conv2dNormActivation(
|
119 |
+
cnf.input_channels,
|
120 |
+
expanded_channels,
|
121 |
+
kernel_size=1,
|
122 |
+
norm_layer=norm_layer,
|
123 |
+
activation_layer=activation_layer,
|
124 |
+
)
|
125 |
+
)
|
126 |
+
|
127 |
+
# depthwise
|
128 |
+
layers.append(
|
129 |
+
Conv2dNormActivation(
|
130 |
+
expanded_channels,
|
131 |
+
expanded_channels,
|
132 |
+
kernel_size=cnf.kernel,
|
133 |
+
stride=cnf.stride,
|
134 |
+
groups=expanded_channels,
|
135 |
+
norm_layer=norm_layer,
|
136 |
+
activation_layer=activation_layer,
|
137 |
+
)
|
138 |
+
)
|
139 |
+
|
140 |
+
# squeeze and excitation
|
141 |
+
squeeze_channels = max(1, cnf.input_channels // 4)
|
142 |
+
layers.append(
|
143 |
+
se_layer(
|
144 |
+
expanded_channels,
|
145 |
+
squeeze_channels,
|
146 |
+
activation=partial(nn.SiLU, inplace=True),
|
147 |
+
)
|
148 |
+
)
|
149 |
+
|
150 |
+
# project
|
151 |
+
layers.append(
|
152 |
+
Conv2dNormActivation(
|
153 |
+
expanded_channels,
|
154 |
+
cnf.out_channels,
|
155 |
+
kernel_size=1,
|
156 |
+
norm_layer=norm_layer,
|
157 |
+
activation_layer=None,
|
158 |
+
)
|
159 |
+
)
|
160 |
+
|
161 |
+
self.block = nn.Sequential(*layers)
|
162 |
+
self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
|
163 |
+
self.out_channels = cnf.out_channels
|
164 |
+
|
165 |
+
def forward(self, input: Tensor) -> Tensor:
|
166 |
+
result = self.block(input)
|
167 |
+
if self.use_res_connect:
|
168 |
+
result = self.stochastic_depth(result)
|
169 |
+
result += input
|
170 |
+
return result
|
171 |
+
|
172 |
+
|
173 |
+
class FusedMBConv(nn.Module):
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
cnf: FusedMBConvConfig,
|
177 |
+
stochastic_depth_prob: float,
|
178 |
+
norm_layer: Callable[..., nn.Module],
|
179 |
+
) -> None:
|
180 |
+
super().__init__()
|
181 |
+
|
182 |
+
if not (1 <= cnf.stride <= 2):
|
183 |
+
raise ValueError("illegal stride value")
|
184 |
+
|
185 |
+
self.use_res_connect = (
|
186 |
+
cnf.stride == 1 and cnf.input_channels == cnf.out_channels
|
187 |
+
)
|
188 |
+
|
189 |
+
layers: List[nn.Module] = []
|
190 |
+
activation_layer = nn.SiLU
|
191 |
+
|
192 |
+
expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
|
193 |
+
if expanded_channels != cnf.input_channels:
|
194 |
+
# fused expand
|
195 |
+
layers.append(
|
196 |
+
Conv2dNormActivation(
|
197 |
+
cnf.input_channels,
|
198 |
+
expanded_channels,
|
199 |
+
kernel_size=cnf.kernel,
|
200 |
+
stride=cnf.stride,
|
201 |
+
norm_layer=norm_layer,
|
202 |
+
activation_layer=activation_layer,
|
203 |
+
)
|
204 |
+
)
|
205 |
+
|
206 |
+
# project
|
207 |
+
layers.append(
|
208 |
+
Conv2dNormActivation(
|
209 |
+
expanded_channels,
|
210 |
+
cnf.out_channels,
|
211 |
+
kernel_size=1,
|
212 |
+
norm_layer=norm_layer,
|
213 |
+
activation_layer=None,
|
214 |
+
)
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
layers.append(
|
218 |
+
Conv2dNormActivation(
|
219 |
+
cnf.input_channels,
|
220 |
+
cnf.out_channels,
|
221 |
+
kernel_size=cnf.kernel,
|
222 |
+
stride=cnf.stride,
|
223 |
+
norm_layer=norm_layer,
|
224 |
+
activation_layer=activation_layer,
|
225 |
+
)
|
226 |
+
)
|
227 |
+
|
228 |
+
self.block = nn.Sequential(*layers)
|
229 |
+
self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
|
230 |
+
self.out_channels = cnf.out_channels
|
231 |
+
|
232 |
+
def forward(self, input: Tensor) -> Tensor:
|
233 |
+
result = self.block(input)
|
234 |
+
if self.use_res_connect:
|
235 |
+
result = self.stochastic_depth(result)
|
236 |
+
result += input
|
237 |
+
return result
|
238 |
+
|
239 |
+
|
240 |
+
class EfficientNetConfig(PretrainedConfig):
|
241 |
+
|
242 |
+
model_type = "efficientnet"
|
243 |
+
|
244 |
+
def __init__(
|
245 |
+
self,
|
246 |
+
# inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
|
247 |
+
dropout: float,
|
248 |
+
num_channels: int = 61,
|
249 |
+
stochastic_depth_prob: float = 0.2,
|
250 |
+
num_classes: int = 2,
|
251 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
252 |
+
# last_channel: Optional[int] = None,
|
253 |
+
size: str='v2_s',
|
254 |
+
width_mult: float = 1.0,
|
255 |
+
depth_mult: float = 1.0,
|
256 |
+
**kwargs: Any,
|
257 |
+
) -> None:
|
258 |
+
"""
|
259 |
+
EfficientNet V1 and V2 main class
|
260 |
+
|
261 |
+
Args:
|
262 |
+
inverted_residual_setting (Sequence[Union[MBConvConfig, FusedMBConvConfig]]): Network structure
|
263 |
+
dropout (float): The droupout probability
|
264 |
+
stochastic_depth_prob (float): The stochastic depth probability
|
265 |
+
num_classes (int): Number of classes
|
266 |
+
norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
|
267 |
+
last_channel (int): The number of channels on the penultimate layer
|
268 |
+
"""
|
269 |
+
super().__init__()
|
270 |
+
# _log_api_usage_once(self)
|
271 |
+
|
272 |
+
inverted_residual_setting, last_channel = _efficientnet_conf(
|
273 |
+
"efficientnet_%s" % (size), width_mult=width_mult, depth_mult=depth_mult
|
274 |
+
)
|
275 |
+
|
276 |
+
if not inverted_residual_setting:
|
277 |
+
raise ValueError("The inverted_residual_setting should not be empty")
|
278 |
+
elif not (
|
279 |
+
isinstance(inverted_residual_setting, Sequence)
|
280 |
+
and all([isinstance(s, _MBConvConfig) for s in inverted_residual_setting])
|
281 |
+
):
|
282 |
+
raise TypeError(
|
283 |
+
"The inverted_residual_setting should be List[MBConvConfig]"
|
284 |
+
)
|
285 |
+
|
286 |
+
if "block" in kwargs:
|
287 |
+
warnings.warn(
|
288 |
+
"The parameter 'block' is deprecated since 0.13 and will be removed 0.15. "
|
289 |
+
"Please pass this information on 'MBConvConfig.block' instead."
|
290 |
+
)
|
291 |
+
if kwargs["block"] is not None:
|
292 |
+
for s in inverted_residual_setting:
|
293 |
+
if isinstance(s, MBConvConfig):
|
294 |
+
s.block = kwargs["block"]
|
295 |
+
|
296 |
+
if norm_layer is None:
|
297 |
+
norm_layer = nn.BatchNorm2d
|
298 |
+
|
299 |
+
layers: List[nn.Module] = []
|
300 |
+
|
301 |
+
# building first layer
|
302 |
+
firstconv_output_channels = inverted_residual_setting[0].input_channels
|
303 |
+
layers.append(
|
304 |
+
Conv2dNormActivation(
|
305 |
+
num_channels,
|
306 |
+
firstconv_output_channels,
|
307 |
+
kernel_size=3,
|
308 |
+
stride=2,
|
309 |
+
norm_layer=norm_layer,
|
310 |
+
activation_layer=nn.SiLU,
|
311 |
+
)
|
312 |
+
)
|
313 |
+
|
314 |
+
# building inverted residual blocks
|
315 |
+
total_stage_blocks = sum(cnf.num_layers for cnf in inverted_residual_setting)
|
316 |
+
stage_block_id = 0
|
317 |
+
for cnf in inverted_residual_setting:
|
318 |
+
stage: List[nn.Module] = []
|
319 |
+
for _ in range(cnf.num_layers):
|
320 |
+
# copy to avoid modifications. shallow copy is enough
|
321 |
+
block_cnf = copy.copy(cnf)
|
322 |
+
|
323 |
+
# overwrite info if not the first conv in the stage
|
324 |
+
if stage:
|
325 |
+
block_cnf.input_channels = block_cnf.out_channels
|
326 |
+
block_cnf.stride = 1
|
327 |
+
|
328 |
+
# adjust stochastic depth probability based on the depth of the stage block
|
329 |
+
sd_prob = (
|
330 |
+
stochastic_depth_prob * float(stage_block_id) / total_stage_blocks
|
331 |
+
)
|
332 |
+
|
333 |
+
stage.append(block_cnf.block(block_cnf, sd_prob, norm_layer))
|
334 |
+
stage_block_id += 1
|
335 |
+
|
336 |
+
layers.append(nn.Sequential(*stage))
|
337 |
+
|
338 |
+
# building last several layers
|
339 |
+
lastconv_input_channels = inverted_residual_setting[-1].out_channels
|
340 |
+
lastconv_output_channels = (
|
341 |
+
last_channel if last_channel is not None else 4 * lastconv_input_channels
|
342 |
+
)
|
343 |
+
layers.append(
|
344 |
+
Conv2dNormActivation(
|
345 |
+
lastconv_input_channels,
|
346 |
+
lastconv_output_channels,
|
347 |
+
kernel_size=1,
|
348 |
+
norm_layer=norm_layer,
|
349 |
+
activation_layer=nn.SiLU,
|
350 |
+
)
|
351 |
+
)
|
352 |
+
|
353 |
+
self.features = nn.Sequential(*layers)
|
354 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
355 |
+
self.classifier = nn.Sequential(
|
356 |
+
nn.Dropout(p=dropout, inplace=True),
|
357 |
+
nn.Linear(lastconv_output_channels, num_classes),
|
358 |
+
)
|
359 |
+
|
360 |
+
for m in self.modules():
|
361 |
+
if isinstance(m, nn.Conv2d):
|
362 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
363 |
+
if m.bias is not None:
|
364 |
+
nn.init.zeros_(m.bias)
|
365 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
366 |
+
nn.init.ones_(m.weight)
|
367 |
+
nn.init.zeros_(m.bias)
|
368 |
+
elif isinstance(m, nn.Linear):
|
369 |
+
init_range = 1.0 / math.sqrt(m.out_features)
|
370 |
+
nn.init.uniform_(m.weight, -init_range, init_range)
|
371 |
+
nn.init.zeros_(m.bias)
|
372 |
+
|
373 |
+
def _forward_impl(self, x: Tensor) -> Tensor:
|
374 |
+
x = self.features(x)
|
375 |
+
|
376 |
+
x = self.avgpool(x)
|
377 |
+
x = torch.flatten(x, 1)
|
378 |
+
|
379 |
+
x = self.classifier(x)
|
380 |
+
|
381 |
+
return x
|
382 |
+
|
383 |
+
def forward(self, x: Tensor) -> Tensor:
|
384 |
+
return self._forward_impl(x)
|
385 |
+
|
386 |
+
|
387 |
+
# def _efficientnet(
|
388 |
+
# inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
|
389 |
+
# dropout: float,
|
390 |
+
# last_channel: Optional[int],
|
391 |
+
# weights=None,
|
392 |
+
# num_channels: int = 61,
|
393 |
+
# stochastic_depth_prob: float = 0.2,
|
394 |
+
# progress: bool = True,
|
395 |
+
# num_classes: int = 2,
|
396 |
+
# **kwargs: Any,
|
397 |
+
# ) -> EfficientNetCongig:
|
398 |
+
|
399 |
+
# model = EfficientNetCongif(
|
400 |
+
# inverted_residual_setting,
|
401 |
+
# dropout,
|
402 |
+
# num_classes=num_classes,
|
403 |
+
# num_channels=num_channels,
|
404 |
+
# stochastic_depth_prob=stochastic_depth_prob,
|
405 |
+
# last_channel=last_channel,
|
406 |
+
# **kwargs,
|
407 |
+
# )
|
408 |
+
|
409 |
+
# return model
|
410 |
+
|
411 |
+
|
412 |
+
def _efficientnet_conf(
|
413 |
+
arch: str,
|
414 |
+
**kwargs: Any,
|
415 |
+
) -> Tuple[Sequence[Union[MBConvConfig, FusedMBConvConfig]], Optional[int]]:
|
416 |
+
inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]]
|
417 |
+
if arch.startswith("efficientnet_b"):
|
418 |
+
bneck_conf = partial(
|
419 |
+
MBConvConfig,
|
420 |
+
width_mult=kwargs.pop("width_mult"),
|
421 |
+
depth_mult=kwargs.pop("depth_mult"),
|
422 |
+
)
|
423 |
+
inverted_residual_setting = [
|
424 |
+
bneck_conf(1, 3, 1, 32, 16, 1),
|
425 |
+
bneck_conf(6, 3, 2, 16, 24, 2),
|
426 |
+
bneck_conf(6, 5, 2, 24, 40, 2),
|
427 |
+
bneck_conf(6, 3, 2, 40, 80, 3),
|
428 |
+
bneck_conf(6, 5, 1, 80, 112, 3),
|
429 |
+
bneck_conf(6, 5, 2, 112, 192, 4),
|
430 |
+
bneck_conf(6, 3, 1, 192, 320, 1),
|
431 |
+
]
|
432 |
+
last_channel = None
|
433 |
+
elif arch.startswith("efficientnet_v2_s"):
|
434 |
+
inverted_residual_setting = [
|
435 |
+
FusedMBConvConfig(1, 3, 1, 24, 24, 2),
|
436 |
+
FusedMBConvConfig(4, 3, 2, 24, 48, 4),
|
437 |
+
FusedMBConvConfig(4, 3, 2, 48, 64, 4),
|
438 |
+
MBConvConfig(4, 3, 2, 64, 128, 6),
|
439 |
+
MBConvConfig(6, 3, 1, 128, 160, 9),
|
440 |
+
MBConvConfig(6, 3, 2, 160, 256, 15),
|
441 |
+
]
|
442 |
+
last_channel = 1280
|
443 |
+
elif arch.startswith("efficientnet_v2_m"):
|
444 |
+
inverted_residual_setting = [
|
445 |
+
FusedMBConvConfig(1, 3, 1, 24, 24, 3),
|
446 |
+
FusedMBConvConfig(4, 3, 2, 24, 48, 5),
|
447 |
+
FusedMBConvConfig(4, 3, 2, 48, 80, 5),
|
448 |
+
MBConvConfig(4, 3, 2, 80, 160, 7),
|
449 |
+
MBConvConfig(6, 3, 1, 160, 176, 14),
|
450 |
+
MBConvConfig(6, 3, 2, 176, 304, 18),
|
451 |
+
MBConvConfig(6, 3, 1, 304, 512, 5),
|
452 |
+
]
|
453 |
+
last_channel = 1280
|
454 |
+
elif arch.startswith("efficientnet_v2_l"):
|
455 |
+
inverted_residual_setting = [
|
456 |
+
FusedMBConvConfig(1, 3, 1, 32, 32, 4),
|
457 |
+
FusedMBConvConfig(4, 3, 2, 32, 64, 7),
|
458 |
+
FusedMBConvConfig(4, 3, 2, 64, 96, 7),
|
459 |
+
MBConvConfig(4, 3, 2, 96, 192, 10),
|
460 |
+
MBConvConfig(6, 3, 1, 192, 224, 19),
|
461 |
+
MBConvConfig(6, 3, 2, 224, 384, 25),
|
462 |
+
MBConvConfig(6, 3, 1, 384, 640, 7),
|
463 |
+
]
|
464 |
+
last_channel = 1280
|
465 |
+
else:
|
466 |
+
raise ValueError(f"Unsupported model type {arch}")
|
467 |
+
|
468 |
+
return inverted_residual_setting, last_channel
|
469 |
+
|
470 |
+
|
471 |
+
# def create_an_efficientnet(
|
472 |
+
# num_channels: int = 61,
|
473 |
+
# size: str = "v2_s",
|
474 |
+
# width_mult: float = 1.0,
|
475 |
+
# depth_mult: float = 1.0,
|
476 |
+
# dropout: float = 0.25,
|
477 |
+
# stochastic_depth_prob: float = 0.2,
|
478 |
+
# num_classes: int = 2,
|
479 |
+
# **kwargs,
|
480 |
+
# ):
|
481 |
+
|
482 |
+
# """Makes an EfficientNet of a given size and set of parameters"""
|
483 |
+
|
484 |
+
# inverted_residual_setting, last_channel = _efficientnet_conf(
|
485 |
+
# "efficientnet_%s" % (size), width_mult=width_mult, depth_mult=depth_mult
|
486 |
+
# )
|
487 |
+
|
488 |
+
# model = _efficientnet(
|
489 |
+
# inverted_residual_setting,
|
490 |
+
# dropout,
|
491 |
+
# last_channel,
|
492 |
+
# weights=None,
|
493 |
+
# num_classes=num_classes,
|
494 |
+
# num_channels=num_channels,
|
495 |
+
# stochastic_depth_prob=stochastic_depth_prob,
|
496 |
+
# progress=True,
|
497 |
+
# **kwargs,
|
498 |
+
# )
|
499 |
+
|
500 |
+
# return model
|