Nguyen Thai Thao Uyen commited on
Commit
3185613
·
1 Parent(s): 4036101

Add application file

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -2,15 +2,14 @@ import gradio as gr
2
  import torch
3
  from ultralyticsplus import YOLO, render_result
4
 
5
-
6
  torch.hub.download_url_to_file(
7
- 'https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg',
8
  'one.jpg')
9
  torch.hub.download_url_to_file(
10
- 'https://www.state.gov/wp-content/uploads/2022/01/shutterstock_248799484-scaled.jpg',
11
  'two.jpg')
12
  torch.hub.download_url_to_file(
13
- 'https://cdn.theatlantic.com/thumbor/xoh2WVVSx4F2uboG9xbT5BDprtM=/0x0:4939x2778/960x540/media/img/mt/2023/11/LON68717_copy/original.jpg',
14
  'three.jpg')
15
 
16
 
@@ -38,7 +37,7 @@ def yoloV8_func(image: gr.Image = None,
38
  print("Probability:", box.conf)
39
 
40
  # Render the output image with bounding boxes around detected objects
41
- render = render_result(model=model, image=image, result=results[0])
42
  return render
43
 
44
 
@@ -58,9 +57,9 @@ outputs = gr.Image(type="filepath", label="Output Image")
58
  title = "YOLOv8 101: Custom Object Detection on Objects in Big Cities"
59
 
60
 
61
- examples = [['one.jpg', 640, 0.5, 0.7],
62
- ['two.jpg', 800, 0.5, 0.6],
63
- ['three.jpg', 900, 0.5, 0.8]]
64
 
65
  yolo_app = gr.Interface(
66
  fn=yoloV8_func,
 
2
  import torch
3
  from ultralyticsplus import YOLO, render_result
4
 
 
5
  torch.hub.download_url_to_file(
6
+ 'https://cdn.theatlantic.com/thumbor/xoh2WVVSx4F2uboG9xbT5BDprtM=/0x0:4939x2778/960x540/media/img/mt/2023/11/LON68717_copy/original.jpg',
7
  'one.jpg')
8
  torch.hub.download_url_to_file(
9
+ 'https://i.ytimg.com/vi/lZQX2mmLo2s/maxresdefault.jpg',
10
  'two.jpg')
11
  torch.hub.download_url_to_file(
12
+ 'https://assets.bwbx.io/images/users/iqjWHBFdfxIU/ioQgA.854d7s/v1/-1x-1.jpg',
13
  'three.jpg')
14
 
15
 
 
37
  print("Probability:", box.conf)
38
 
39
  # Render the output image with bounding boxes around detected objects
40
+ render = render_result(model=model, image=image, result=results[0], rect_th = 4, text_th = 4)
41
  return render
42
 
43
 
 
57
  title = "YOLOv8 101: Custom Object Detection on Objects in Big Cities"
58
 
59
 
60
+ examples = [['one.jpg', 900, 0.5, 0.8],
61
+ ['two.jpg', 1152, 0.05, 0.05],
62
+ ['three.jpg', 1024, 0.25, 0.25]]
63
 
64
  yolo_app = gr.Interface(
65
  fn=yoloV8_func,