import gradio as gr import torch from ultralyticsplus import YOLO, render_result torch.hub.download_url_to_file( 'https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg', 'one.jpg') torch.hub.download_url_to_file( 'https://www.state.gov/wp-content/uploads/2022/01/shutterstock_248799484-scaled.jpg', 'two.jpg') torch.hub.download_url_to_file( 'https://cdn.theatlantic.com/thumbor/xoh2WVVSx4F2uboG9xbT5BDprtM=/0x0:4939x2778/960x540/media/img/mt/2023/11/LON68717_copy/original.jpg', 'three.jpg') def yoloV8_func(image: gr.inputs.Image = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.4, iou_threshold: gr.inputs.Slider = 0.50): """This function performs YOLOv8 object detection on the given image. Args: image (gr.inputs.Image, optional): Input image to detect objects on. Defaults to None. image_size (gr.inputs.Slider, optional): Desired image size for the model. Defaults to 640. conf_threshold (gr.inputs.Slider, optional): Confidence threshold for object detection. Defaults to 0.4. iou_threshold (gr.inputs.Slider, optional): Intersection over Union threshold for object detection. Defaults to 0.50. """ # Load the YOLOv8 model from the 'best.pt' checkpoint model_path = "YOLO-best.pt" model = YOLO(model_path) # Perform object detection on the input image using the YOLOv8 model results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size) # Print the detected objects' information (class, coordinates, and probability) box = results[0].boxes print("Object type:", box.cls) print("Coordinates:", box.xyxy) print("Probability:", box.conf) # Render the output image with bounding boxes around detected objects render = render_result(model=model, image=image, result=results[0]) return render inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "YOLOv8 101: Custom Object Detection on Objects in Big Cities" examples = [['one.jpg', 640, 0.5, 0.7], ['two.jpg', 800, 0.5, 0.6], ['three.jpg', 900, 0.5, 0.8]] yolo_app = gr.Interface( fn=yoloV8_func, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, ) # Launch the Gradio interface in debug mode with queue enabled yolo_app.launch(debug=True, enable_queue=True)