import gradio as gr import torch from ultralyticsplus import YOLO, render_result torch.hub.download_url_to_file( 'https://cdn.theatlantic.com/thumbor/xoh2WVVSx4F2uboG9xbT5BDprtM=/0x0:4939x2778/960x540/media/img/mt/2023/11/LON68717_copy/original.jpg', 'one.jpg') torch.hub.download_url_to_file( 'https://i.ytimg.com/vi/lZQX2mmLo2s/maxresdefault.jpg', 'two.jpg') torch.hub.download_url_to_file( 'https://assets.bwbx.io/images/users/iqjWHBFdfxIU/ioQgA.854d7s/v1/-1x-1.jpg', 'three.jpg') torch.hub.download_url_to_file( 'https://cdn.apartmenttherapy.info/image/upload/f_jpg,q_auto:eco,c_fill,g_auto,w_1500,ar_1:1/at%2Fhouse%20tours%2Farchive%2FTour%20a%20Colorful%20Home%20in%20Montreal%2Ffada199d36b084830ef3563b555887f31851ca55', 'four.jpg') def yoloV8_func(image: gr.Image = None, image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.4, iou_threshold: gr.Slider = 0.50): """ This function performs YOLOv8 object detection on the given image. """ # Load the YOLOv8 model from the 'best.pt' checkpoint model_path = "YOLO-best.pt" model = YOLO(model_path) # Perform object detection on the input image using the YOLOv8 model results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size) # Print the detected objects' information (class, coordinates, and probability) box = results[0].boxes print("Object type:", box.cls) print("Coordinates:", box.xyxy) print("Probability:", box.conf) # Render the output image with bounding boxes around detected objects render = render_result(model=model, image=image, result=results[0], rect_th = 4, text_th = 4) return render inputs = [ gr.Image(type="filepath", label="Input Image"), gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"), gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.Image(type="filepath", label="Output Image") title = "YOLOv8 Custom Object Detection by Uyen Nguyen" examples = [['one.jpg', 900, 0.5, 0.8], ['two.jpg', 1152, 0.05, 0.05], ['three.jpg', 1024, 0.25, 0.25], ['four.jpg', 832, 0.3, 0.3]] yolo_app = gr.Interface( fn=yoloV8_func, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, ) # Launch the Gradio interface in debug mode with queue enabled yolo_app.launch(debug=True, share=True)