Spaces:
Build error
Build error
Nguyen Thai Thao Uyen
commited on
Commit
·
586d4f8
1
Parent(s):
1617319
UI
Browse files
app.py
CHANGED
@@ -1,202 +1,59 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
# Reactive values to store location information
|
62 |
-
loc1 = reactive.value()
|
63 |
-
loc2 = reactive.value()
|
64 |
-
|
65 |
-
|
66 |
-
# Update the reactive values when the selectize inputs change
|
67 |
-
@reactive.effect
|
68 |
-
def _():
|
69 |
-
loc1.set(CITIES.get(input.loc1(), loc_str_to_coords(input.loc1())))
|
70 |
-
loc2.set(CITIES.get(input.loc2(), loc_str_to_coords(input.loc2())))
|
71 |
-
|
72 |
-
|
73 |
-
# When a marker is moved, the input value gets updated to "lat, lon",
|
74 |
-
# so we decode that into a dict (and also look up the altitude)
|
75 |
-
def loc_str_to_coords(x: str) -> dict:
|
76 |
-
latlon = x.split(", ")
|
77 |
-
if len(latlon) != 2:
|
78 |
-
return {}
|
79 |
-
|
80 |
-
lat = float(latlon[0])
|
81 |
-
lon = float(latlon[1])
|
82 |
-
|
83 |
-
try:
|
84 |
-
import requests
|
85 |
-
|
86 |
-
query = f"https://api.open-elevation.com/api/v1/lookup?locations={lat},{lon}"
|
87 |
-
r = requests.get(query).json()
|
88 |
-
altitude = r["results"][0]["elevation"]
|
89 |
-
except Exception:
|
90 |
-
altitude = None
|
91 |
-
|
92 |
-
return {"latitude": lat, "longitude": lon, "altitude": altitude}
|
93 |
-
|
94 |
-
|
95 |
-
# Convenient way to get the lat/lons as a tuple
|
96 |
-
@reactive.calc
|
97 |
-
def loc1xy():
|
98 |
-
return loc1()["latitude"], loc1()["longitude"]
|
99 |
-
|
100 |
-
|
101 |
-
@reactive.calc
|
102 |
-
def loc2xy():
|
103 |
-
return loc2()["latitude"], loc2()["longitude"]
|
104 |
-
|
105 |
-
|
106 |
-
# Add marker for first location
|
107 |
-
@reactive.effect
|
108 |
-
def _():
|
109 |
-
update_marker(map.widget, loc1xy(), on_move1, "loc1")
|
110 |
-
|
111 |
-
|
112 |
-
# Add marker for second location
|
113 |
-
@reactive.effect
|
114 |
-
def _():
|
115 |
-
update_marker(map.widget, loc2xy(), on_move2, "loc2")
|
116 |
-
|
117 |
-
|
118 |
-
# Add line and fit bounds when either marker is moved
|
119 |
-
@reactive.effect
|
120 |
-
def _():
|
121 |
-
update_line(map.widget, loc1xy(), loc2xy())
|
122 |
-
|
123 |
-
|
124 |
-
# If new bounds fall outside of the current view, fit the bounds
|
125 |
-
@reactive.effect
|
126 |
-
def _():
|
127 |
-
l1 = loc1xy()
|
128 |
-
l2 = loc2xy()
|
129 |
-
|
130 |
-
lat_rng = [min(l1[0], l2[0]), max(l1[0], l2[0])]
|
131 |
-
lon_rng = [min(l1[1], l2[1]), max(l1[1], l2[1])]
|
132 |
-
new_bounds = [
|
133 |
-
[lat_rng[0], lon_rng[0]],
|
134 |
-
[lat_rng[1], lon_rng[1]],
|
135 |
-
]
|
136 |
-
|
137 |
-
b = map.widget.bounds
|
138 |
-
if len(b) == 0:
|
139 |
-
map.widget.fit_bounds(new_bounds)
|
140 |
-
elif (
|
141 |
-
lat_rng[0] < b[0][0]
|
142 |
-
or lat_rng[1] > b[1][0]
|
143 |
-
or lon_rng[0] < b[0][1]
|
144 |
-
or lon_rng[1] > b[1][1]
|
145 |
-
):
|
146 |
-
map.widget.fit_bounds(new_bounds)
|
147 |
-
|
148 |
-
|
149 |
-
# Update the basemap
|
150 |
-
@reactive.effect
|
151 |
-
def _():
|
152 |
-
update_basemap(map.widget, input.basemap())
|
153 |
-
|
154 |
-
|
155 |
-
# ---------------------------------------------------------------
|
156 |
-
# Helper functions
|
157 |
-
# ---------------------------------------------------------------
|
158 |
-
|
159 |
-
|
160 |
-
def update_marker(map: L.Map, loc: tuple, on_move: object, name: str):
|
161 |
-
remove_layer(map, name)
|
162 |
-
m = L.Marker(location=loc, draggable=True, name=name)
|
163 |
-
m.on_move(on_move)
|
164 |
-
map.add_layer(m)
|
165 |
-
|
166 |
-
|
167 |
-
def update_line(map: L.Map, loc1: tuple, loc2: tuple):
|
168 |
-
remove_layer(map, "line")
|
169 |
-
map.add_layer(
|
170 |
-
L.Polyline(locations=[loc1, loc2], color="blue", weight=2, name="line")
|
171 |
-
)
|
172 |
-
|
173 |
-
|
174 |
-
def update_basemap(map: L.Map, basemap: str):
|
175 |
-
for layer in map.layers:
|
176 |
-
if isinstance(layer, L.TileLayer):
|
177 |
-
map.remove_layer(layer)
|
178 |
-
map.add_layer(L.basemap_to_tiles(BASEMAPS[input.basemap()]))
|
179 |
-
|
180 |
-
|
181 |
-
def remove_layer(map: L.Map, name: str):
|
182 |
-
for layer in map.layers:
|
183 |
-
if layer.name == name:
|
184 |
-
map.remove_layer(layer)
|
185 |
-
|
186 |
-
|
187 |
-
def on_move1(**kwargs):
|
188 |
-
return on_move("loc1", **kwargs)
|
189 |
-
|
190 |
-
|
191 |
-
def on_move2(**kwargs):
|
192 |
-
return on_move("loc2", **kwargs)
|
193 |
-
|
194 |
-
|
195 |
-
# When the markers are moved, update the selectize inputs to include the new
|
196 |
-
# location (which results in the locations() reactive value getting updated,
|
197 |
-
# which invalidates any downstream reactivity that depends on it)
|
198 |
-
def on_move(id, **kwargs):
|
199 |
-
loc = kwargs["location"]
|
200 |
-
loc_str = f"{loc[0]}, {loc[1]}"
|
201 |
-
choices = city_names + [loc_str]
|
202 |
-
ui.update_selectize(id, selected=loc_str, choices=choices)
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import List, Dict, Tuple
|
3 |
+
import matplotlib.colors as mpl_colors
|
4 |
+
import pandas as pd
|
5 |
+
import seaborn as sns
|
6 |
+
import shinyswatch
|
7 |
+
import run
|
8 |
+
|
9 |
+
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
10 |
+
from transformers import SamModel, SamConfig, SamProcessor
|
11 |
+
import torch
|
12 |
+
|
13 |
+
sns.set_theme()
|
14 |
+
|
15 |
+
www_dir = Path(__file__).parent.resolve() / "www"
|
16 |
+
|
17 |
+
app_ui = ui.page_fillable(
|
18 |
+
shinyswatch.theme.minty(),
|
19 |
+
ui.layout_sidebar(
|
20 |
+
ui.sidebar(
|
21 |
+
ui.input_file("image_input", "Upload image: ", multiple=True),
|
22 |
+
),
|
23 |
+
ui.output_image("image"),
|
24 |
+
ui.output_image("image_output"),
|
25 |
+
ui.output_image("single_patch_prediction"),
|
26 |
+
ui.output_image("single_patch_prob")
|
27 |
+
),
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def server(input: Inputs, output: Outputs, session: Session):
|
32 |
+
@output
|
33 |
+
@render.image
|
34 |
+
def image():
|
35 |
+
here = Path(__file__).parent
|
36 |
+
if input.image_input():
|
37 |
+
src = input.image_input()[0]['datapath']
|
38 |
+
img = {"src": src, "width": "500px"}
|
39 |
+
return img
|
40 |
+
return None
|
41 |
+
|
42 |
+
@output
|
43 |
+
@render.image
|
44 |
+
def image_output():
|
45 |
+
here = Path(__file__).parent
|
46 |
+
if input.image_input():
|
47 |
+
src = input.image_input()[0]['datapath']
|
48 |
+
img = {"src": src, "width": "500px"}
|
49 |
+
x = run.pred(src)
|
50 |
+
print(x)
|
51 |
+
return img
|
52 |
+
return None
|
53 |
+
|
54 |
+
|
55 |
+
app = App(
|
56 |
+
app_ui,
|
57 |
+
server,
|
58 |
+
static_assets=str(www_dir),
|
59 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import SamModel, SamConfig, SamProcessor
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import app
|
6 |
+
import os
|
7 |
+
|
8 |
+
def pred(src):
|
9 |
+
# os.environ['HUGGINGFACE_HUB_HOME'] = './.cache'
|
10 |
+
# Load the model configuration
|
11 |
+
cache_dir = "/code/cache"
|
12 |
+
model_config = SamConfig.from_pretrained("facebook/sam-vit-base",
|
13 |
+
cache_dir=cache_dir)
|
14 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base",
|
15 |
+
cache_dir=cache_dir)
|
16 |
+
|
17 |
+
# Create an instance of the model architecture with the loaded configuration
|
18 |
+
model = SamModel(config=model_config)
|
19 |
+
#Update the model by loading the weights from saved file.
|
20 |
+
model.load_state_dict(torch.load("sam_model.pth",
|
21 |
+
map_location=torch.device('cpu')))
|
22 |
+
|
23 |
+
new_image = np.array(Image.open(src))
|
24 |
+
inputs = processor(new_image, return_tensors="pt")
|
25 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
26 |
+
x = 1
|
27 |
+
# model.eval()
|
28 |
+
# # forward pass
|
29 |
+
# with torch.no_grad():
|
30 |
+
# outputs = model(**inputs, multimask_output=False)
|
31 |
+
|
32 |
+
# # apply sigmoid
|
33 |
+
# single_patch_prob = torch.sigmoid(outputs.pred_masks.squeeze(1))
|
34 |
+
# # convert soft mask to hard mask
|
35 |
+
# single_patch_prob = single_patch_prob.cpu().numpy().squeeze()
|
36 |
+
# single_patch_prediction = (single_patch_prob > 0.5).astype(np.uint8)
|
37 |
+
return x
|