Spaces:
Build error
Build error
Nguyen Thai Thao Uyen
commited on
Commit
·
8e17922
1
Parent(s):
990d0b6
Success!
Browse files
app.py
CHANGED
@@ -62,18 +62,17 @@ def server(input: Inputs, output: Outputs, session: Session):
|
|
62 |
|
63 |
pred_prob, pred_prediction = run.pred(new_image)
|
64 |
|
65 |
-
|
|
|
66 |
|
67 |
-
|
68 |
-
axes[0].
|
|
|
69 |
|
70 |
im = axes[1].imshow(pred_prob)
|
71 |
axes[1].set_title("Probability Map")
|
72 |
cbar = fig.colorbar(im, ax=axes[1])
|
73 |
|
74 |
-
axes[2].imshow(pred_prediction, cmap='gray')
|
75 |
-
axes[2].set_title("Prediction")
|
76 |
-
|
77 |
for ax in axes:
|
78 |
ax.set_xticks([])
|
79 |
ax.set_yticks([])
|
|
|
62 |
|
63 |
pred_prob, pred_prediction = run.pred(new_image)
|
64 |
|
65 |
+
print("plotting...")
|
66 |
+
fig, axes = plt.subplots(1, 2, figsize=(15, 5))
|
67 |
|
68 |
+
|
69 |
+
axes[0].imshow(pred_prediction, cmap='gray')
|
70 |
+
axes[0].set_title("Prediction")
|
71 |
|
72 |
im = axes[1].imshow(pred_prob)
|
73 |
axes[1].set_title("Probability Map")
|
74 |
cbar = fig.colorbar(im, ax=axes[1])
|
75 |
|
|
|
|
|
|
|
76 |
for ax in axes:
|
77 |
ax.set_xticks([])
|
78 |
ax.set_yticks([])
|
run.py
CHANGED
@@ -29,17 +29,20 @@ def pred(src):
|
|
29 |
image = Image.open(src)
|
30 |
rgbim = image.convert("RGB")
|
31 |
new_image = np.array(rgbim)
|
32 |
-
print(
|
|
|
33 |
|
34 |
inputs = processor(new_image, return_tensors="pt")
|
35 |
model.eval()
|
36 |
|
37 |
# forward pass
|
|
|
38 |
with torch.no_grad():
|
39 |
outputs = model(pixel_values=inputs["pixel_values"],
|
40 |
multimask_output=False)
|
41 |
|
42 |
# apply sigmoid
|
|
|
43 |
pred_prob = torch.sigmoid(outputs.pred_masks.squeeze(1))
|
44 |
|
45 |
# convert soft mask to hard mask
|
@@ -47,5 +50,4 @@ def pred(src):
|
|
47 |
pred_prob = pred_prob.cpu().numpy().squeeze()
|
48 |
pred_prediction = (pred_prob > PROBABILITY_THRES).astype(np.uint8)
|
49 |
|
50 |
-
x=1
|
51 |
return pred_prob, pred_prediction
|
|
|
29 |
image = Image.open(src)
|
30 |
rgbim = image.convert("RGB")
|
31 |
new_image = np.array(rgbim)
|
32 |
+
print()
|
33 |
+
print("image shape:",new_image.shape)
|
34 |
|
35 |
inputs = processor(new_image, return_tensors="pt")
|
36 |
model.eval()
|
37 |
|
38 |
# forward pass
|
39 |
+
print("predicting...")
|
40 |
with torch.no_grad():
|
41 |
outputs = model(pixel_values=inputs["pixel_values"],
|
42 |
multimask_output=False)
|
43 |
|
44 |
# apply sigmoid
|
45 |
+
print("apply sigmoid...")
|
46 |
pred_prob = torch.sigmoid(outputs.pred_masks.squeeze(1))
|
47 |
|
48 |
# convert soft mask to hard mask
|
|
|
50 |
pred_prob = pred_prob.cpu().numpy().squeeze()
|
51 |
pred_prediction = (pred_prob > PROBABILITY_THRES).astype(np.uint8)
|
52 |
|
|
|
53 |
return pred_prob, pred_prediction
|