Spaces:
Build error
Build error
Nguyen Thai Thao Uyen
commited on
Commit
·
c1565a6
1
Parent(s):
abbb1a2
Update run.py
Browse files
run.py
CHANGED
@@ -4,38 +4,46 @@ import numpy as np
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import app
|
6 |
import os
|
7 |
-
import
|
|
|
8 |
|
9 |
def pred(src):
|
10 |
-
# os.environ['HUGGINGFACE_HUB_HOME'] = './.cache'
|
11 |
-
# Load the model configuration
|
12 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
model.to(device)
|
14 |
-
|
15 |
-
cache_dir = "/code/cache"
|
16 |
-
model_config = SamConfig.from_pretrained("facebook/sam-vit-base",
|
17 |
-
cache_dir=cache_dir)
|
18 |
-
processor = SamProcessor.from_pretrained("facebook/sam-vit-base",
|
19 |
-
cache_dir=cache_dir)
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
22 |
model = SamModel(config=model_config)
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
new_image = np.array(Image.open(src))
|
28 |
inputs = processor(new_image, return_tensors="pt")
|
29 |
-
|
30 |
-
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
#
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
return x
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import app
|
6 |
import os
|
7 |
+
import json
|
8 |
+
from PIL import Image
|
9 |
|
10 |
def pred(src):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# -- load model configuration
|
13 |
+
MODEL_FILE = "sam_model.pth"
|
14 |
+
model_config = SamConfig.from_pretrained("facebook/sam-vit-base")
|
15 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
16 |
+
|
17 |
model = SamModel(config=model_config)
|
18 |
+
model.load_state_dict(torch.load(MODEL_FILE))
|
19 |
+
|
20 |
+
with open("sam-config.json", "r") as f: # modified config json file
|
21 |
+
modified_config_dict = json.load(f)
|
22 |
+
|
23 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base",
|
24 |
+
**modified_config_dict)
|
25 |
+
|
26 |
+
# -- process image
|
27 |
+
image = Image.open(src)
|
28 |
+
rgbim = image.convert("RGB")
|
29 |
+
new_image = np.array(rgbim)
|
30 |
+
print("Shape:",new_image.shape)
|
31 |
|
|
|
32 |
inputs = processor(new_image, return_tensors="pt")
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
# forward pass
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(pixel_values=inputs["pixel_values"],
|
38 |
+
multimask_output=False)
|
39 |
+
|
40 |
+
# apply sigmoid
|
41 |
+
pred_prob = torch.sigmoid(outputs.pred_masks.squeeze(1))
|
42 |
+
|
43 |
+
# convert soft mask to hard mask
|
44 |
+
PROBABILITY_THRES = 0.30
|
45 |
+
pred_prob = pred_prob.cpu().numpy().squeeze()
|
46 |
+
pred_prediction = (pred_prob > PROBABILITY_THRES).astype(np.uint8)
|
47 |
+
|
48 |
+
x=1
|
49 |
return x
|