chatbot-demo / app.py
chobob311's picture
Update app.py
470180a verified
raw
history blame
1.99 kB
import gradio as gr
from transformers import LlamaTokenizer, LlamaForCausalLM
import torch
model_repo_id = "Bllossom/llama-3-Korean-Bllossom-70B"
# ν† ν¬λ‚˜μ΄μ € λ‘œλ“œ
tokenizer = LlamaTokenizer.from_pretrained(
model_repo_id,
use_auth_token='your_hf_access_token' # ν•„μš”ν•œ 경우 μ•‘μ„ΈμŠ€ 토큰 μΆ”κ°€
)
# λͺ¨λΈ λ‘œλ“œ
model = LlamaForCausalLM.from_pretrained(
model_repo_id,
torch_dtype=torch.float16, # λ˜λŠ” torch.bfloat16
device_map="auto", # κ°€λŠ₯ν•œ 경우 GPU에 μžλ™ ν• λ‹Ή
use_auth_token='your_hf_access_token' # ν•„μš”ν•œ 경우 μ•‘μ„ΈμŠ€ 토큰 μΆ”κ°€
)
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
# ν”„λ‘¬ν”„νŠΈ 생성
prompt = system_message + "\n"
for user_msg, bot_msg in history:
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
prompt += f"User: {message}\nAssistant:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response[len(prompt):].strip()
history.append((message, response))
return history
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()