Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,19 @@ import gradio as gr
|
|
2 |
from transformers import LlamaTokenizer, LlamaForCausalLM
|
3 |
import torch
|
4 |
|
5 |
-
|
|
|
6 |
|
7 |
-
#
|
8 |
tokenizer = LlamaTokenizer.from_pretrained(
|
9 |
-
|
10 |
-
use_auth_token=
|
11 |
)
|
12 |
-
|
13 |
-
# λͺ¨λΈ λ‘λ
|
14 |
model = LlamaForCausalLM.from_pretrained(
|
15 |
-
|
16 |
-
torch_dtype=torch.
|
17 |
-
device_map="auto",
|
18 |
-
use_auth_token=
|
19 |
)
|
20 |
|
21 |
def respond(
|
@@ -32,8 +31,10 @@ def respond(
|
|
32 |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
33 |
prompt += f"User: {message}\nAssistant:"
|
34 |
|
|
|
35 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
36 |
|
|
|
37 |
outputs = model.generate(
|
38 |
**inputs,
|
39 |
max_new_tokens=max_tokens,
|
@@ -44,17 +45,23 @@ def respond(
|
|
44 |
pad_token_id=tokenizer.eos_token_id,
|
45 |
)
|
46 |
|
|
|
47 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
response = response[len(prompt):].strip()
|
49 |
|
|
|
50 |
history.append((message, response))
|
51 |
|
52 |
return history
|
53 |
|
|
|
54 |
demo = gr.ChatInterface(
|
55 |
fn=respond,
|
56 |
additional_inputs=[
|
57 |
-
gr.Textbox(
|
|
|
|
|
|
|
58 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
59 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
60 |
gr.Slider(
|
|
|
2 |
from transformers import LlamaTokenizer, LlamaForCausalLM
|
3 |
import torch
|
4 |
|
5 |
+
model_id = 'Bllossom/llama-3-Korean-Bllossom-70B'
|
6 |
+
hf_access_token = 'γ
γ
' # μ€μ νκΉ
νμ΄μ€ μ‘μΈμ€ ν ν°μΌλ‘ κ΅μ²΄νμΈμ
|
7 |
|
8 |
+
# ν ν¬λμ΄μ μ λͺ¨λΈ λ‘λ
|
9 |
tokenizer = LlamaTokenizer.from_pretrained(
|
10 |
+
model_id,
|
11 |
+
use_auth_token=hf_access_token
|
12 |
)
|
|
|
|
|
13 |
model = LlamaForCausalLM.from_pretrained(
|
14 |
+
model_id,
|
15 |
+
torch_dtype=torch.bfloat16,
|
16 |
+
device_map="auto",
|
17 |
+
use_auth_token=hf_access_token
|
18 |
)
|
19 |
|
20 |
def respond(
|
|
|
31 |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
32 |
prompt += f"User: {message}\nAssistant:"
|
33 |
|
34 |
+
# μ
λ ₯ ν ν°ν
|
35 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
36 |
|
37 |
+
# λͺ¨λΈ μλ΅ μμ±
|
38 |
outputs = model.generate(
|
39 |
**inputs,
|
40 |
max_new_tokens=max_tokens,
|
|
|
45 |
pad_token_id=tokenizer.eos_token_id,
|
46 |
)
|
47 |
|
48 |
+
# μλ΅ λμ½λ©
|
49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
response = response[len(prompt):].strip()
|
51 |
|
52 |
+
# νμ€ν 리μ μΆκ°
|
53 |
history.append((message, response))
|
54 |
|
55 |
return history
|
56 |
|
57 |
+
# Gradio μΈν°νμ΄μ€ μμ±
|
58 |
demo = gr.ChatInterface(
|
59 |
fn=respond,
|
60 |
additional_inputs=[
|
61 |
+
gr.Textbox(
|
62 |
+
value="You are a friendly Chatbot.",
|
63 |
+
label="System message"
|
64 |
+
),
|
65 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
66 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
67 |
gr.Slider(
|