|
|
|
|
|
import os |
|
import requests |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import psutil |
|
import spaces |
|
import torch |
|
from time import time |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
from llama_cpp import Llama |
|
|
|
|
|
model_uri_hf=os.getenv("MODEL_URI_HF") |
|
|
|
|
|
|
|
|
|
|
|
model_uri_hf="https://huggingface.co/TheBloke/neural-chat-7B-v3-2-GGUF/blob/main/neural-chat-7b-v3-2.Q2_K.gguf" |
|
model_uri_hf="https://huggingface.co/TheBloke/neural-chat-7B-v3-2-GGUF/resolve/main/neural-chat-7b-v3-2.Q2_K.gguf" |
|
|
|
|
|
|
|
|
|
print(f"debug: init model: {model_uri_hf}") |
|
|
|
|
|
if not os.path.isfile('model.bin'): |
|
print(f"debug: can't find model locally, downloading ...") |
|
|
|
response = requests.get(model_uri_hf) |
|
|
|
|
|
with open('model.bin', 'wb') as file: |
|
file.write(response.content) |
|
|
|
llm = Llama(model_path="./model.bin") |
|
print("debug: model loaded and ready") |
|
|
|
|
|
title = f"# Demo for 7B Models - Quantized {model_uri_hf}" |
|
descr = ''' |
|
Quantized to run in the free tier hosting. |
|
Have a quick way to test models or share them with others without hassle. |
|
It runs slow, as it's on cpu. Usable for basic tests. |
|
It uses quantized models in gguf-Format and llama.cpp to run them. |
|
|
|
Powered by ...''' |
|
|
|
print(f"DEBUG: Memory free: {psutil.virtual_memory().free / (1024.0 ** 3)} GiB") |
|
print(f"DEBUG: Memory available: {psutil.virtual_memory().available / (1024.0 ** 3)} GiB") |
|
print(f"DEBUG: Memory: {psutil.virtual_memory().total / (1024.0 ** 3)} GiB") |
|
|
|
DESCRIPTION = f"# Test model: {model_uri_hf}" |
|
|
|
if torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>This space is using CPU only. Use a different one if you want to go fast and use GPU. </p>" |
|
|
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
|
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str]: |
|
conversation = [] |
|
for user, assistant in chat_history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
|
|
chat_completion = llm.create_chat_completion(conversation, stream=True) |
|
|
|
outputs = [] |
|
|
|
for completion in chat_completion: |
|
if "content" in completion["choices"][0]["delta"]: |
|
outputs.append(completion["choices"][0]['delta']['content']) |
|
yield "".join(outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.2, |
|
), |
|
], |
|
stop_btn=None, |
|
|
|
examples=[ |
|
["Hello there! How are you doing?"], |
|
["Can you explain briefly to me what is the Python programming language?"], |
|
["Explain the plot of Cinderella in a sentence."], |
|
["How many hours does it take a man to eat a Helicopter?"], |
|
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], |
|
], |
|
) |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(descr) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
|
|
) |
|
chat_interface.render() |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |