File size: 9,864 Bytes
cacb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os
import random
import glob

import torch
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.ops import sample_points_from_meshes

from util.hypersim_utils import read_h5py, read_img


def hypersim_collate_fn(batch):
    assert len(batch[0]) == 4
    return (
        FrameData.collate([x[0] for x in batch]),
        FrameData.collate([x[1] for x in batch]),
        FrameData.collate([x[2] for x in batch]),
        [x[2] for x in batch]
    )


def is_good_xyz(xyz):
    assert len(xyz.shape) == 3
    return (torch.isfinite(xyz.sum(axis=2))).sum() > 2000


def get_camera_pos_file_name_from_frame_name(frame_name):
    tmp = frame_name.split('/')
    tmp[-3] = '_detail'
    tmp[-2] = 'cam_' + tmp[-2].split('_')[2]
    tmp[-1] = 'camera_keyframe_positions.hdf5'
    return '/'.join(tmp)


def get_camera_look_at_file_name_from_frame_name(frame_name):
    tmp = frame_name.split('/')
    tmp[-3] = '_detail'
    tmp[-2] = 'cam_' + tmp[-2].split('_')[2]
    tmp[-1] = 'camera_keyframe_look_at_positions.hdf5'
    return '/'.join(tmp)


def get_camera_orientation_file_name_from_frame_name(frame_name):
    tmp = frame_name.split('/')
    tmp[-3] = '_detail'
    tmp[-2] = 'cam_' + tmp[-2].split('_')[2]
    tmp[-1] = 'camera_keyframe_orientations.hdf5'
    return '/'.join(tmp)


def read_scale_from_frame_name(frame_name):
    tmp = frame_name.split('/')
    with open('/'.join(tmp[:-3] + ['_detail', 'metadata_scene.csv'])) as f:
        for line in f:
            items = line.split(',')
    return float(items[1])


def random_crop(xyz, img, is_train=True):
    assert xyz.shape[0] == img.shape[0]
    assert xyz.shape[1] == img.shape[1]

    width, height = img.shape[0], img.shape[1]
    w = h = min(width, height)
    if is_train:
        i = torch.randint(0, width - w + 1, size=(1,)).item()
        j = torch.randint(0, height - h + 1, size=(1,)).item()
    else:
        i = (width - w) // 2
        j = (height - h) // 2
    xyz = xyz[i:i+w, j:j+h]
    img = img[i:i+w, j:j+h]
    xyz = torch.nn.functional.interpolate(
        xyz[None].permute(0, 3, 1, 2), (112, 112),
        mode='bilinear',
    ).permute(0, 2, 3, 1)[0]
    img = torch.nn.functional.interpolate(
        img[None].permute(0, 3, 1, 2), (224, 224),
        mode='bilinear',
    ).permute(0, 2, 3, 1)[0]
    return xyz, img


class HyperSimDataset(torch.utils.data.Dataset):
    def __init__(self, args, is_train, is_viz=False, **kwargs):

        self.args = args
        self.is_train = is_train
        self.is_viz = is_viz

        self.dataset_split = 'train' if is_train else 'val'
        self.scene_names = self.load_scene_names(is_train)

        if not is_train:
            self.meshes = self.load_meshes()

        self.hypersim_gt = self.load_hypersim_gt()


    def load_hypersim_gt(self):
        gt_filename = 'hypersim_gt_train.pt' if self.dataset_split == 'train' else 'hypersim_gt_val.pt'
        print('loading GT file from', gt_filename)
        gt = torch.load(gt_filename)
        for scene_name in gt.keys():
            good = torch.isfinite(gt[scene_name][0].sum(axis=1)) & torch.isfinite(gt[scene_name][1].sum(axis=1))

            # Subsample GT to reduce memory usage.
            if self.is_train:
                good = good & (torch.rand(good.shape) < 0.5)
            else:
                good = good & (torch.rand(good.shape) < 0.1)
            gt[scene_name] = [gt[scene_name][0][good], gt[scene_name][1][good]]
        return gt

    def load_meshes(self):
        return torch.load('all_hypersim_val_meshes.pt')

    def load_scene_names(self, is_train):
        split = 'train' if is_train else 'test'
        scene_names = []
        with open(os.path.join(
                self.args.hypersim_path,
                'evermotion_dataset/analysis/metadata_images_split_scene_v1.csv'),'r') as f:
            for line in f:
                items = line.split(',')
                if items[-1].strip() == split:
                    scene_names.append(items[0])
        scene_names = sorted(list(set(scene_names)))
        print(len(scene_names), 'scenes loaded:', scene_names)
        return scene_names

    def is_corrupted_frame(self, frame):
        return (
            ('ai_003_001' in frame and 'cam_00' in frame)
            or ('ai_004_009' in frame and 'cam_01' in frame)
        )

    def get_hypersim_data(self, index):
        for retry in range(1000):
            try:
                if retry < 10:
                    scene_name = self.scene_names[index % len(self.scene_names)]
                else:
                    scene_name = random.choice(self.scene_names)

                frames = glob.glob(os.path.join(self.args.hypersim_path, scene_name, 'images/scene_cam_*_final_preview/*tonemap*'))
                seen_frame = random.choice(frames)

                if self.is_corrupted_frame(seen_frame):
                    continue

                seen_data = self.load_frame_data(seen_frame)
                if not is_good_xyz(seen_data[0]):
                    continue

                cur_gt = self.hypersim_gt[scene_name]
                gt_data = [cur_gt[0], cur_gt[1]]

                if self.is_train:
                    mesh_points = torch.zeros((1,))
                else:
                    mesh_points = sample_points_from_meshes(self.meshes[scene_name], 1000000)

                # get camera positions
                camera_positions = read_h5py(get_camera_pos_file_name_from_frame_name(seen_frame))
                camera_position = camera_positions[int(seen_frame.split('.')[-3])]

                # get camera orientations
                cam_orientations = read_h5py(get_camera_orientation_file_name_from_frame_name(seen_frame))
                cam_orientation = cam_orientations[int(seen_frame.split('.')[-3])]
                cam_orientation = cam_orientation * (-1.0)

                # rotate to camera direction
                seen_data[0] = torch.matmul(seen_data[0], cam_orientation)
                gt_data[0] = torch.matmul(gt_data[0], cam_orientation)

                # shift to camera center
                camera_position = torch.matmul(camera_position, cam_orientation)
                seen_data[0] -= camera_position
                gt_data[0] -= camera_position
                # to meter
                asset_to_meter_scale = read_scale_from_frame_name(seen_frame)
                seen_data[0] = seen_data[0] * asset_to_meter_scale
                gt_data[0] = gt_data[0] * asset_to_meter_scale

                # get points GT
                n_gt = 30000
                in_front_of_cam = (gt_data[0][..., 2] > 0)
                if in_front_of_cam.sum() < 1000:
                    print('Warning! Not enough in front of cam.', in_front_of_cam.sum())
                    continue
                gt_data = [gt_data[0][in_front_of_cam], gt_data[1][in_front_of_cam]]

                if in_front_of_cam.sum() < n_gt:
                    selected = random.choices(range(gt_data[0].shape[0]), k=n_gt)
                else:
                    selected = random.sample(range(gt_data[0].shape[0]), n_gt)
                gt_data = [gt_data[0][selected][None], gt_data[1][selected][None], torch.zeros((1,))]

                if not self.is_train:
                    mesh_points = torch.matmul(mesh_points, cam_orientation)
                    mesh_points -= camera_position * asset_to_meter_scale
                    in_front_of_cam = (mesh_points[..., 2] > 0)
                    if in_front_of_cam.sum() < 1000:
                        print('Warning! Not enough mesh in front of cam.', in_front_of_cam.sum())
                        continue
                    mesh_points = mesh_points[in_front_of_cam]
                    if in_front_of_cam.sum() < n_gt:
                        selected = random.choices(range(mesh_points.shape[0]), k=n_gt)
                    else:
                        selected = random.sample(range(mesh_points.shape[0]), n_gt)
                    mesh_points = mesh_points[selected][None]
                    mesh_points[..., 0] *= -1

                seen_data[0][..., 0] *= -1
                gt_data[0][..., 0] *= -1

                seen_data[1] = seen_data[1].permute(2, 0, 1)

                return seen_data, gt_data, mesh_points, scene_name
            except Exception as e:
                print(scene_name, 'loading failed', retry, e)


    def __getitem__(self, index):

        seen_data, gt_data, mesh_points, scene_name = self.get_hypersim_data(index)

        # normalize the data
        example_std = get_example_std(seen_data[0])
        seen_data[0] = seen_data[0] / example_std
        gt_data[0] = gt_data[0] / example_std
        mesh_points = mesh_points / example_std

        return (
            seen_data,
            gt_data,
            mesh_points,
            scene_name,
        )

    def load_frame_data(self, frame_path):
        frame_xyz_path = frame_path.replace('final_preview/', 'geometry_hdf5/').replace('.tonemap.jpg', '.position.hdf5')
        xyz = read_h5py(frame_xyz_path)
        img = read_img(frame_path)

        xyz, img = random_crop(
            xyz, img,
            is_train=self.is_train,
        )
        return [xyz, img]

    def __len__(self) -> int:
        if self.is_train:
            return int(len(self.scene_names) * self.args.train_epoch_len_multiplier)
        elif self.is_viz:
            return len(self.scene_names)
        else:
            return int(len(self.scene_names) * self.args.eval_epoch_len_multiplier)


def get_example_std(x):
    x = x.reshape(-1, 3)
    x = x[torch.isfinite(x.sum(dim=1))]
    return x.std(dim=0).mean().detach()