upload files
Browse files- app.py +263 -0
- previewer/modules.py +36 -0
- previewer/text2img_wurstchen_b_v1_previewer_100k.pt +3 -0
app.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
import torch
|
7 |
+
from typing import List
|
8 |
+
from diffusers.utils import numpy_to_pil
|
9 |
+
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
|
10 |
+
from diffusers.pipelines.wuerstchen import WuerstchenPrior, default_stage_c_timesteps
|
11 |
+
from previewer.modules import Previewer
|
12 |
+
|
13 |
+
DESCRIPTION = "# Würstchen"
|
14 |
+
if not torch.cuda.is_available():
|
15 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
16 |
+
|
17 |
+
MAX_SEED = np.iinfo(np.int32).max
|
18 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
19 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
20 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
21 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
22 |
+
PREVIEW_IMAGES = True
|
23 |
+
|
24 |
+
dtype = torch.float16
|
25 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
prior_pipeline = WuerstchenPriorPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=dtype)
|
28 |
+
decoder_pipeline = WuerstchenDecoderPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=dtype)
|
29 |
+
if ENABLE_CPU_OFFLOAD:
|
30 |
+
prior_pipeline.enable_model_cpu_offload()
|
31 |
+
decoder_pipeline.enable_model_cpu_offload()
|
32 |
+
else:
|
33 |
+
prior_pipeline.to(device)
|
34 |
+
decoder_pipeline.to(device)
|
35 |
+
|
36 |
+
if USE_TORCH_COMPILE:
|
37 |
+
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
|
38 |
+
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="reduce-overhead", fullgraph=True)
|
39 |
+
|
40 |
+
if PREVIEW_IMAGES:
|
41 |
+
previewer = Previewer()
|
42 |
+
previewer.load_state_dict(torch.load(r"C:\Users\d6582\Documents\ml\wuerstchen\diffusers\previewer\text2img_wurstchen_b_v1_previewer_100k.pt")["state_dict"])
|
43 |
+
previewer.eval().requires_grad_(False).to(device).to(dtype)
|
44 |
+
|
45 |
+
def callback_prior(i, t, latents):
|
46 |
+
output = previewer(latents)
|
47 |
+
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).cpu().numpy())
|
48 |
+
return output
|
49 |
+
else:
|
50 |
+
previewer = None
|
51 |
+
callback_prior = None
|
52 |
+
else:
|
53 |
+
prior_pipeline = None
|
54 |
+
decoder_pipeline = None
|
55 |
+
|
56 |
+
|
57 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
58 |
+
if randomize_seed:
|
59 |
+
seed = random.randint(0, MAX_SEED)
|
60 |
+
return seed
|
61 |
+
|
62 |
+
|
63 |
+
def generate(
|
64 |
+
prompt: str,
|
65 |
+
negative_prompt: str = "",
|
66 |
+
seed: int = 0,
|
67 |
+
width: int = 1024,
|
68 |
+
height: int = 1024,
|
69 |
+
prior_num_inference_steps: int = 60,
|
70 |
+
# prior_timesteps: List[float] = None,
|
71 |
+
prior_guidance_scale: float = 4.0,
|
72 |
+
decoder_num_inference_steps: int = 12,
|
73 |
+
# decoder_timesteps: List[float] = None,
|
74 |
+
decoder_guidance_scale: float = 0.0,
|
75 |
+
num_images_per_prompt: int = 2,
|
76 |
+
) -> PIL.Image.Image:
|
77 |
+
generator = torch.Generator().manual_seed(seed)
|
78 |
+
|
79 |
+
prior_output = prior_pipeline(
|
80 |
+
prompt=prompt,
|
81 |
+
height=height,
|
82 |
+
width=width,
|
83 |
+
timesteps=default_stage_c_timesteps,
|
84 |
+
negative_prompt=negative_prompt,
|
85 |
+
guidance_scale=prior_guidance_scale,
|
86 |
+
num_images_per_prompt=num_images_per_prompt,
|
87 |
+
generator=generator,
|
88 |
+
callback=callback_prior,
|
89 |
+
)
|
90 |
+
|
91 |
+
if PREVIEW_IMAGES:
|
92 |
+
for _ in range(len(default_stage_c_timesteps)):
|
93 |
+
r = next(prior_output)
|
94 |
+
if isinstance(r, list):
|
95 |
+
yield r
|
96 |
+
prior_output = r
|
97 |
+
|
98 |
+
decoder_output = decoder_pipeline(
|
99 |
+
image_embeddings=prior_output.image_embeddings,
|
100 |
+
prompt=prompt,
|
101 |
+
num_inference_steps=decoder_num_inference_steps,
|
102 |
+
# timesteps=decoder_timesteps,
|
103 |
+
guidance_scale=decoder_guidance_scale,
|
104 |
+
negative_prompt=negative_prompt,
|
105 |
+
num_images_per_prompt=num_images_per_prompt,
|
106 |
+
generator=generator,
|
107 |
+
output_type="pil",
|
108 |
+
).images
|
109 |
+
yield decoder_output
|
110 |
+
|
111 |
+
|
112 |
+
examples = [
|
113 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
114 |
+
"An astronaut riding a green horse",
|
115 |
+
]
|
116 |
+
|
117 |
+
with gr.Blocks(css="style.css") as demo:
|
118 |
+
gr.Markdown(DESCRIPTION)
|
119 |
+
gr.DuplicateButton(
|
120 |
+
value="Duplicate Space for private use",
|
121 |
+
elem_id="duplicate-button",
|
122 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
123 |
+
)
|
124 |
+
with gr.Group():
|
125 |
+
with gr.Row():
|
126 |
+
prompt = gr.Text(
|
127 |
+
label="Prompt",
|
128 |
+
show_label=False,
|
129 |
+
max_lines=1,
|
130 |
+
placeholder="Enter your prompt",
|
131 |
+
container=False,
|
132 |
+
)
|
133 |
+
run_button = gr.Button("Run", scale=0)
|
134 |
+
result = gr.Gallery(label="Result", show_label=False)
|
135 |
+
with gr.Accordion("Advanced options", open=False):
|
136 |
+
negative_prompt = gr.Text(
|
137 |
+
label="Negative prompt",
|
138 |
+
max_lines=1,
|
139 |
+
placeholder="Enter a Negative Prompt",
|
140 |
+
)
|
141 |
+
|
142 |
+
seed = gr.Slider(
|
143 |
+
label="Seed",
|
144 |
+
minimum=0,
|
145 |
+
maximum=MAX_SEED,
|
146 |
+
step=1,
|
147 |
+
value=0,
|
148 |
+
)
|
149 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
150 |
+
with gr.Row():
|
151 |
+
width = gr.Slider(
|
152 |
+
label="Width",
|
153 |
+
minimum=768,
|
154 |
+
maximum=MAX_IMAGE_SIZE,
|
155 |
+
step=128,
|
156 |
+
value=1024,
|
157 |
+
)
|
158 |
+
height = gr.Slider(
|
159 |
+
label="Height",
|
160 |
+
minimum=768,
|
161 |
+
maximum=MAX_IMAGE_SIZE,
|
162 |
+
step=128,
|
163 |
+
value=1024,
|
164 |
+
)
|
165 |
+
num_images_per_prompt = gr.Slider(
|
166 |
+
label="Number of Images",
|
167 |
+
minimum=1,
|
168 |
+
maximum=6,
|
169 |
+
step=1,
|
170 |
+
value=2,
|
171 |
+
)
|
172 |
+
with gr.Row():
|
173 |
+
prior_guidance_scale = gr.Slider(
|
174 |
+
label="Prior Guidance Scale",
|
175 |
+
minimum=1,
|
176 |
+
maximum=20,
|
177 |
+
step=0.1,
|
178 |
+
value=4.0,
|
179 |
+
)
|
180 |
+
prior_num_inference_steps = gr.Slider(
|
181 |
+
label="Prior Inference Steps",
|
182 |
+
minimum=10,
|
183 |
+
maximum=100,
|
184 |
+
step=1,
|
185 |
+
value=60,
|
186 |
+
)
|
187 |
+
|
188 |
+
decoder_guidance_scale = gr.Slider(
|
189 |
+
label="Decoder Guidance Scale",
|
190 |
+
minimum=1,
|
191 |
+
maximum=20,
|
192 |
+
step=0.1,
|
193 |
+
value=0.0,
|
194 |
+
)
|
195 |
+
decoder_num_inference_steps = gr.Slider(
|
196 |
+
label="Decoder Inference Steps",
|
197 |
+
minimum=10,
|
198 |
+
maximum=100,
|
199 |
+
step=1,
|
200 |
+
value=12,
|
201 |
+
)
|
202 |
+
|
203 |
+
gr.Examples(
|
204 |
+
examples=examples,
|
205 |
+
inputs=prompt,
|
206 |
+
outputs=result,
|
207 |
+
fn=generate,
|
208 |
+
cache_examples=CACHE_EXAMPLES,
|
209 |
+
)
|
210 |
+
|
211 |
+
inputs = [
|
212 |
+
prompt,
|
213 |
+
negative_prompt,
|
214 |
+
seed,
|
215 |
+
width,
|
216 |
+
height,
|
217 |
+
prior_num_inference_steps,
|
218 |
+
# prior_timesteps,
|
219 |
+
prior_guidance_scale,
|
220 |
+
decoder_num_inference_steps,
|
221 |
+
# decoder_timesteps,
|
222 |
+
decoder_guidance_scale,
|
223 |
+
num_images_per_prompt,
|
224 |
+
]
|
225 |
+
prompt.submit(
|
226 |
+
fn=randomize_seed_fn,
|
227 |
+
inputs=[seed, randomize_seed],
|
228 |
+
outputs=seed,
|
229 |
+
queue=False,
|
230 |
+
api_name=False,
|
231 |
+
).then(
|
232 |
+
fn=generate,
|
233 |
+
inputs=inputs,
|
234 |
+
outputs=result,
|
235 |
+
api_name="run",
|
236 |
+
)
|
237 |
+
negative_prompt.submit(
|
238 |
+
fn=randomize_seed_fn,
|
239 |
+
inputs=[seed, randomize_seed],
|
240 |
+
outputs=seed,
|
241 |
+
queue=False,
|
242 |
+
api_name=False,
|
243 |
+
).then(
|
244 |
+
fn=generate,
|
245 |
+
inputs=inputs,
|
246 |
+
outputs=result,
|
247 |
+
api_name=False,
|
248 |
+
)
|
249 |
+
run_button.click(
|
250 |
+
fn=randomize_seed_fn,
|
251 |
+
inputs=[seed, randomize_seed],
|
252 |
+
outputs=seed,
|
253 |
+
queue=False,
|
254 |
+
api_name=False,
|
255 |
+
).then(
|
256 |
+
fn=generate,
|
257 |
+
inputs=inputs,
|
258 |
+
outputs=result,
|
259 |
+
api_name=False,
|
260 |
+
)
|
261 |
+
|
262 |
+
if __name__ == "__main__":
|
263 |
+
demo.queue(max_size=20).launch()
|
previewer/modules.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
|
3 |
+
# Effnet 16x16 to 64x64 previewer
|
4 |
+
class Previewer(nn.Module):
|
5 |
+
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
6 |
+
super().__init__()
|
7 |
+
self.blocks = nn.Sequential(
|
8 |
+
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 36 channels to 512 channels
|
9 |
+
nn.GELU(),
|
10 |
+
nn.BatchNorm2d(c_hidden),
|
11 |
+
|
12 |
+
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.BatchNorm2d(c_hidden),
|
15 |
+
|
16 |
+
nn.ConvTranspose2d(c_hidden, c_hidden//2, kernel_size=2, stride=2), # 16 -> 32
|
17 |
+
nn.GELU(),
|
18 |
+
nn.BatchNorm2d(c_hidden//2),
|
19 |
+
|
20 |
+
nn.Conv2d(c_hidden//2, c_hidden//2, kernel_size=3, padding=1),
|
21 |
+
nn.GELU(),
|
22 |
+
nn.BatchNorm2d(c_hidden//2),
|
23 |
+
|
24 |
+
nn.ConvTranspose2d(c_hidden//2, c_hidden//4, kernel_size=2, stride=2), # 32 -> 64
|
25 |
+
nn.GELU(),
|
26 |
+
nn.BatchNorm2d(c_hidden//4),
|
27 |
+
|
28 |
+
nn.Conv2d(c_hidden//4, c_hidden//4, kernel_size=3, padding=1),
|
29 |
+
nn.GELU(),
|
30 |
+
nn.BatchNorm2d(c_hidden//4),
|
31 |
+
|
32 |
+
nn.Conv2d(c_hidden//4, c_out, kernel_size=1),
|
33 |
+
)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
return self.blocks(x)
|
previewer/text2img_wurstchen_b_v1_previewer_100k.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76e82483253b24430b20e3e0c98ec2f9aeb45f0b487f7b330bac044b5de0d6f7
|
3 |
+
size 45244773
|