Spaces:
Sleeping
Sleeping
File size: 1,666 Bytes
9fc6b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
# %%
# https://towardsdatascience.com/connecting-to-a-graphql-api-using-python-246dda927840
import requests
import json
import jsonlines
import pandas as pd
import pyarrow as pa
import pyarrow.json as pj
# %%
query = """
query {
characters {
results {
name
status
species
type
gender
}
}
}
"""
query = """
query {
characters {
results {
name
status
species
type
gender
image
episode{
episode
name
air_date
}
}
}
}
"""
# %%
url = 'https://rickandmortyapi.com/graphql/'
r = requests.post(url, json={'query': query})
print(r.status_code)
print(r.text)
# %%
json_data = json.loads(r.text)
# %%
df_data = json_data['data']['characters']['results']
df = pd.json_normalize(df_data)
# %%
# https://blog.softhints.com/python-convert-json-to-json-lines/
with jsonlines.open('output.jsonl', mode='w') as writer:
writer.write_all(df_data)
# %%
datjl = pd.read_json("output.jsonl", lines=True)
# %%
pj.read_json("output.jsonl", parse_options = pj.ParseOptions(newlines_in_values=True))
# %%
# if we want to convert the format to JSON arrays.
# df_data = json_data['data']['characters']['results']
# for i, value in enumerate(df_data):
# print(i)
# idat = df_data[i].copy()
# number = list()
# name = list()
# airdate = list()
# for j, jvalue in enumerate(idat['episode']):
# iseason = idat['episode'][j]
# number.append(iseason['episode'])
# name.append(iseason['name'])
# airdate.append(iseason['air_date'])
# df_data[i]['episode'] = {
# 'number':number,
# "name":name,
# "air_date":airdate} |