File size: 10,235 Bytes
6f4a3dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import requests
import pandas as pd
from tqdm.auto import tqdm
from utils import *
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load


class DeepRL_Leaderboard:
    def __init__(self) -> None:
        self.leaderboard= {} 

    def add_leaderboard(self,id=None, title=None):
        if id is not None and title is not None:
            id = id.strip()
            title = title.strip()
            self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}})
    def get_data(self):
        return self.leaderboard

    def get_ids(self):
        return list(self.leaderboard.keys())

          

# CSS file for the
with open('app.css','r') as f:
    BLOCK_CSS = f.read() 



LOADED_MODEL_IDS = {}

def get_data(rl_env):
    global LOADED_MODEL_IDS 
    data = []
    model_ids = get_model_ids(rl_env)
    LOADED_MODEL_IDS[rl_env]=model_ids

    for model_id in tqdm(model_ids):
        meta = get_metadata(model_id)
        if meta is None:
            continue
        row={}
        row["metadata"] = meta
       
        data.append(row)
    return pd.DataFrame.from_records(data)

def get_data_per_env(rl_env):
    dataframe = get_data(rl_env)
    return dataframe,dataframe.empty   



rl_leaderboard = DeepRL_Leaderboard()
rl_leaderboard.add_leaderboard('CarRacing-v0'," The Car Racing 🏎️ Leaderboard πŸš€")
rl_leaderboard.add_leaderboard('MountainCar-v0',"The Mountain Car ⛰️ πŸš— Leaderboard πŸš€")
rl_leaderboard.add_leaderboard('LunarLander-v2',"The Lunar Lander πŸŒ• Leaderboard πŸš€")
rl_leaderboard.add_leaderboard('BipedalWalker-v3',"The BipedalWalker Leaderboard πŸš€")
rl_leaderboard.add_leaderboard('Taxi-v3','The Taxi-v3πŸš– Leaderboard πŸš€')
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard πŸš€')
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard πŸš€')
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard πŸš€')
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard πŸš€')
rl_leaderboard.add_leaderboard('SpaceInvadersNoFrameskip-v4','The SpaceInvadersNoFrameskip-v4 Leaderboard πŸš€')

RL_ENVS = rl_leaderboard.get_ids()
RL_DETAILS = rl_leaderboard.get_data()


def update_data(rl_env):
    global LOADED_MODEL_IDS
    data = []
    model_ids = [x for x in get_model_ids(rl_env) if x not in LOADED_MODEL_IDS[rl_env]]
    LOADED_MODEL_IDS[rl_env]+=model_ids

    for model_id in tqdm(model_ids):
        meta = get_metadata(model_id)
        if meta is None:
            continue
        row = {}
        row["metadata"] = meta
        data.append(row)
    return pd.DataFrame.from_records(data)



def update_data_per_env(rl_env):
    global RL_DETAILS

    old_dataframe,_ = RL_DETAILS[rl_env]['data']
    new_dataframe = update_data(rl_env)

    new_dataframe = new_dataframe.fillna("")

    dataframe = pd.concat([old_dataframe,new_dataframe])

    return dataframe,dataframe.empty   






def get_info_display(dataframe,env_name,name_leaderboard,is_empty):
    if not is_empty:
        markdown = """
        <div class='infoPoint'>
        <h1> {name_leaderboard} </h1>
        <br>
        <p> This is a leaderboard of <b>{len_dataframe}</b> agents, from <b>{num_unique_users}</b> unique users, playing {env_name} πŸ‘©β€πŸš€. </p>
        <br>
        <p> We use lower bound result to sort the models: mean_reward - std_reward. </p>
        <br>    
        <p> You can click on the model's name to be redirected to its model card which includes documentation. </p>
        <br>
        <p> You want to try your model? Read this <a href="https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md" target="_blank">Unit 1</a> of Deep Reinforcement Learning Class.
        </p>
        </div>
        """.format(len_dataframe = len(dataframe),env_name = env_name,name_leaderboard = name_leaderboard,num_unique_users = len(set(dataframe['User'].values)))

    else:
        markdown = """
        <div class='infoPoint'>
        <h1> {name_leaderboard} </h1>
        <br>
        </div>                  
        """.format(name_leaderboard =  name_leaderboard)
    return markdown    

def reload_all_data():

    global RL_DETAILS,RL_ENVS

    for rl_env in RL_ENVS:
        RL_DETAILS[rl_env]['data'] = update_data_per_env(rl_env)

    html = """<div style="color: green">
                <p> βœ… Leaderboard updated! Click `Show Statistics` to see the current statistics.</p>
                </div>
               """    
    return html            


def reload_leaderboard(rl_env):
    global RL_DETAILS
 
    data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] 

    markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)            
    
    return markdown     
            
def get_units_stat():
    # gets the number of models per unit
    units={'Unit 1':[],'Unit 2':[],'Unit 3':[]}
    for rl_env in RL_ENVS:
        rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
        if is_empty is False:
            # All good! Carry on
            metadata_list = rl_env_metadata['metadata'].values
            units['Unit 1'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags']])
            units['Unit 2'].extend([m for m in metadata_list if 'custom-implementation' in m['tags']])
            units['Unit 3'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags'] and 'SpaceInvadersNoFrameskip-v4'.lower() in [tag.lower for tag in m['tags']]])

    # get count
    for k in units.keys():
        units[k] = len(units[k])

    return plot_bar(value = list(units.values),name = list(units.keys()),x_name = "Units",y_name = "Number of model submissions",title="Number of model submissions per unit")

    
      
def get_models_stat():
    # gets the number of models per unit
    units={}
    for rl_env in RL_ENVS:
        rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
        if is_empty is False:
            # All good! Carry on
            metadata_list = rl_env_metadata['metadata'].values
            units[rl_env] = [m for m in metadata_list]

    # get count
    for k in units.keys():
        units[k] = len(units[k])

    return plot_bar(value = list(units.values),name = list(units.keys()),x_name = "RL Environment",y_name = "Number of model submissions",title="Number of model submissions per RL environment")

def get_user_stat():
    # gets the number of models per unit
    users={}
    for rl_env in RL_ENVS:
        rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
        if is_empty is False:
            # All good! Carry on
            metadata_list = rl_env_metadata['metadata'].values
            users[rl_env] = [m['model_id'].split('/')[0] for m in metadata_list]

    # get count
    for k in users.keys():
        users[k] = len(set(users[k]))

    return plot_bar(value = list(users.values),name = list(users.keys()),x_name = "RL Environment",y_name = "Number of user submissions",title="Number of user submissions per RL environment")

def get_stat():
    # gets the number of models per unit
    units={'Unit 1':[],'Unit 2':[],'Unit 3':[]}
    users={}
    models={}
    for rl_env in RL_ENVS:
        rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
        if is_empty is False:
            # All good! Carry on
            metadata_list = rl_env_metadata['metadata'].values
            units['Unit 1'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags']])
            units['Unit 2'].extend([m for m in metadata_list if 'custom-implementation' in m['tags']])
            units['Unit 3'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags'] and 'spaceinvadersNoFrameskip-v4'.lower() in [tag.lower() for tag in m['tags']]])

            users[rl_env] = [m['model_id'].split('/')[0] for m in metadata_list]
            models[rl_env] = [m for m in metadata_list]

    # get count
    for k in units.keys():
        units[k] = len(units[k])
    for k in users.keys():
        users[k] = len(set(users[k]))  
    for k in models.keys():
        models[k] = len(models[k])      

    units_plot = plot_bar(value = list(units.values()),name = list(units.keys()),x_name = "Units",y_name = "Number of model submissions",title="Number of model submissions per unit")
    user_plot  =  plot_barh(value = list(users.values()),name = list(users.keys()),x_name = "RL Environment",y_name = "Number of unique user submissions",title="Number of unique user submissions per RL environment")
    model_plot =  plot_barh(value = list(models.values()),name = list(models.keys()),x_name = "RL Environment",y_name = "Number of model submissions",title="Number of model submissions per RL environment")
    return units_plot,user_plot,model_plot

                 



block = gr.Blocks(css=BLOCK_CSS)
with block:
    notification = gr.HTML("""<div style="color: green">
                <p> βŒ› Updating leaderboard... </p>
                </div>
               """)
    block.load(reload_all_data,[],[notification])
    
    with gr.Tabs():
        with gr.TabItem("Dashboard") as rl_tab:
            # Stats of user submission per units
            # 2. # model submissions per environment
            # 3. # unique users per environment
            # get_units_stat() 
            #data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] 
            #markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)            
            #env_state =gr.Variable(default_value=rl_env)  
            #output_markdown = gr.HTML(markdown)
            reload = gr.Button('Show Statistics')

            units_plot = gr.Plot(type="matplotlib")
            model_plot = gr.Plot(type="matplotlib")
            user_plot = gr.Plot(type="matplotlib")
            #plot_gender = gr.Plot(type="matplotlib")

            #output_html = gr.HTML(data_html)

            reload.click(get_stat,[],[units_plot,user_plot,model_plot])
            #rl_tab.select(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html])

block.launch()