Spaces:
Runtime error
Runtime error
File size: 10,235 Bytes
6f4a3dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import requests
import pandas as pd
from tqdm.auto import tqdm
from utils import *
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
class DeepRL_Leaderboard:
def __init__(self) -> None:
self.leaderboard= {}
def add_leaderboard(self,id=None, title=None):
if id is not None and title is not None:
id = id.strip()
title = title.strip()
self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}})
def get_data(self):
return self.leaderboard
def get_ids(self):
return list(self.leaderboard.keys())
# CSS file for the
with open('app.css','r') as f:
BLOCK_CSS = f.read()
LOADED_MODEL_IDS = {}
def get_data(rl_env):
global LOADED_MODEL_IDS
data = []
model_ids = get_model_ids(rl_env)
LOADED_MODEL_IDS[rl_env]=model_ids
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
row={}
row["metadata"] = meta
data.append(row)
return pd.DataFrame.from_records(data)
def get_data_per_env(rl_env):
dataframe = get_data(rl_env)
return dataframe,dataframe.empty
rl_leaderboard = DeepRL_Leaderboard()
rl_leaderboard.add_leaderboard('CarRacing-v0'," The Car Racing ποΈ Leaderboard π")
rl_leaderboard.add_leaderboard('MountainCar-v0',"The Mountain Car β°οΈ π Leaderboard π")
rl_leaderboard.add_leaderboard('LunarLander-v2',"The Lunar Lander π Leaderboard π")
rl_leaderboard.add_leaderboard('BipedalWalker-v3',"The BipedalWalker Leaderboard π")
rl_leaderboard.add_leaderboard('Taxi-v3','The Taxi-v3π Leaderboard π')
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard π')
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard π')
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard π')
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard π')
rl_leaderboard.add_leaderboard('SpaceInvadersNoFrameskip-v4','The SpaceInvadersNoFrameskip-v4 Leaderboard π')
RL_ENVS = rl_leaderboard.get_ids()
RL_DETAILS = rl_leaderboard.get_data()
def update_data(rl_env):
global LOADED_MODEL_IDS
data = []
model_ids = [x for x in get_model_ids(rl_env) if x not in LOADED_MODEL_IDS[rl_env]]
LOADED_MODEL_IDS[rl_env]+=model_ids
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
row = {}
row["metadata"] = meta
data.append(row)
return pd.DataFrame.from_records(data)
def update_data_per_env(rl_env):
global RL_DETAILS
old_dataframe,_ = RL_DETAILS[rl_env]['data']
new_dataframe = update_data(rl_env)
new_dataframe = new_dataframe.fillna("")
dataframe = pd.concat([old_dataframe,new_dataframe])
return dataframe,dataframe.empty
def get_info_display(dataframe,env_name,name_leaderboard,is_empty):
if not is_empty:
markdown = """
<div class='infoPoint'>
<h1> {name_leaderboard} </h1>
<br>
<p> This is a leaderboard of <b>{len_dataframe}</b> agents, from <b>{num_unique_users}</b> unique users, playing {env_name} π©βπ. </p>
<br>
<p> We use lower bound result to sort the models: mean_reward - std_reward. </p>
<br>
<p> You can click on the model's name to be redirected to its model card which includes documentation. </p>
<br>
<p> You want to try your model? Read this <a href="https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md" target="_blank">Unit 1</a> of Deep Reinforcement Learning Class.
</p>
</div>
""".format(len_dataframe = len(dataframe),env_name = env_name,name_leaderboard = name_leaderboard,num_unique_users = len(set(dataframe['User'].values)))
else:
markdown = """
<div class='infoPoint'>
<h1> {name_leaderboard} </h1>
<br>
</div>
""".format(name_leaderboard = name_leaderboard)
return markdown
def reload_all_data():
global RL_DETAILS,RL_ENVS
for rl_env in RL_ENVS:
RL_DETAILS[rl_env]['data'] = update_data_per_env(rl_env)
html = """<div style="color: green">
<p> β
Leaderboard updated! Click `Show Statistics` to see the current statistics.</p>
</div>
"""
return html
def reload_leaderboard(rl_env):
global RL_DETAILS
data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
return markdown
def get_units_stat():
# gets the number of models per unit
units={'Unit 1':[],'Unit 2':[],'Unit 3':[]}
for rl_env in RL_ENVS:
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
if is_empty is False:
# All good! Carry on
metadata_list = rl_env_metadata['metadata'].values
units['Unit 1'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags']])
units['Unit 2'].extend([m for m in metadata_list if 'custom-implementation' in m['tags']])
units['Unit 3'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags'] and 'SpaceInvadersNoFrameskip-v4'.lower() in [tag.lower for tag in m['tags']]])
# get count
for k in units.keys():
units[k] = len(units[k])
return plot_bar(value = list(units.values),name = list(units.keys()),x_name = "Units",y_name = "Number of model submissions",title="Number of model submissions per unit")
def get_models_stat():
# gets the number of models per unit
units={}
for rl_env in RL_ENVS:
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
if is_empty is False:
# All good! Carry on
metadata_list = rl_env_metadata['metadata'].values
units[rl_env] = [m for m in metadata_list]
# get count
for k in units.keys():
units[k] = len(units[k])
return plot_bar(value = list(units.values),name = list(units.keys()),x_name = "RL Environment",y_name = "Number of model submissions",title="Number of model submissions per RL environment")
def get_user_stat():
# gets the number of models per unit
users={}
for rl_env in RL_ENVS:
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
if is_empty is False:
# All good! Carry on
metadata_list = rl_env_metadata['metadata'].values
users[rl_env] = [m['model_id'].split('/')[0] for m in metadata_list]
# get count
for k in users.keys():
users[k] = len(set(users[k]))
return plot_bar(value = list(users.values),name = list(users.keys()),x_name = "RL Environment",y_name = "Number of user submissions",title="Number of user submissions per RL environment")
def get_stat():
# gets the number of models per unit
units={'Unit 1':[],'Unit 2':[],'Unit 3':[]}
users={}
models={}
for rl_env in RL_ENVS:
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
if is_empty is False:
# All good! Carry on
metadata_list = rl_env_metadata['metadata'].values
units['Unit 1'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags']])
units['Unit 2'].extend([m for m in metadata_list if 'custom-implementation' in m['tags']])
units['Unit 3'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags'] and 'spaceinvadersNoFrameskip-v4'.lower() in [tag.lower() for tag in m['tags']]])
users[rl_env] = [m['model_id'].split('/')[0] for m in metadata_list]
models[rl_env] = [m for m in metadata_list]
# get count
for k in units.keys():
units[k] = len(units[k])
for k in users.keys():
users[k] = len(set(users[k]))
for k in models.keys():
models[k] = len(models[k])
units_plot = plot_bar(value = list(units.values()),name = list(units.keys()),x_name = "Units",y_name = "Number of model submissions",title="Number of model submissions per unit")
user_plot = plot_barh(value = list(users.values()),name = list(users.keys()),x_name = "RL Environment",y_name = "Number of unique user submissions",title="Number of unique user submissions per RL environment")
model_plot = plot_barh(value = list(models.values()),name = list(models.keys()),x_name = "RL Environment",y_name = "Number of model submissions",title="Number of model submissions per RL environment")
return units_plot,user_plot,model_plot
block = gr.Blocks(css=BLOCK_CSS)
with block:
notification = gr.HTML("""<div style="color: green">
<p> β Updating leaderboard... </p>
</div>
""")
block.load(reload_all_data,[],[notification])
with gr.Tabs():
with gr.TabItem("Dashboard") as rl_tab:
# Stats of user submission per units
# 2. # model submissions per environment
# 3. # unique users per environment
# get_units_stat()
#data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
#markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
#env_state =gr.Variable(default_value=rl_env)
#output_markdown = gr.HTML(markdown)
reload = gr.Button('Show Statistics')
units_plot = gr.Plot(type="matplotlib")
model_plot = gr.Plot(type="matplotlib")
user_plot = gr.Plot(type="matplotlib")
#plot_gender = gr.Plot(type="matplotlib")
#output_html = gr.HTML(data_html)
reload.click(get_stat,[],[units_plot,user_plot,model_plot])
#rl_tab.select(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html])
block.launch()
|