si649_panel / app.py
chriskok3's picture
Reverted app.py
d264abb verified
raw
history blame
8.47 kB
# # load up the libraries
# import panel as pn
# import pandas as pd
# import altair as alt
# from vega_datasets import data
# # we want to use bootstrap/template, tell Panel to load up what we need
# pn.extension(design='bootstrap')
# # we want to use vega, tell Panel to load up what we need
# pn.extension('vega')
# # create a basic template using bootstrap
# template = pn.template.BootstrapTemplate(
# title='SI649 Walkthrough',
# )
# # the main column will hold our key content
# maincol = pn.Column()
# # add some markdown to the main column
# maincol.append("# Markdown Title")
# maincol.append("I can format in cool ways. Like **bold** or *italics* or ***both*** or ~~strikethrough~~ or `code` or [links](https://panel.holoviz.org)")
# maincol.append("I am writing a link [to the streamlit documentation page](https://docs.streamlit.io/en/stable/api.html)")
# maincol.append('![alt text](https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Irises-Vincent_van_Gogh.jpg/314px-Irises-Vincent_van_Gogh.jpg)')
# # load up a dataframe and show it in the main column
# cars_url = "https://raw.githubusercontent.com/altair-viz/vega_datasets/master/vega_datasets/_data/cars.json"
# cars = pd.read_json(cars_url)
# temps = data.seattle_weather()
# maincol.append(temps.head(10))
# # create a basic chart
# hp_mpg = alt.Chart(cars).mark_circle(size=80).encode(
# x='Horsepower:Q',
# y='Miles_per_Gallon:Q',
# color='Origin:N'
# )
# # dispaly it in the main column
# # maincol.append(hp_mpg)
# # create a basic slider
# simpleslider = pn.widgets.IntSlider(name='Simple Slider', start=0, end=100, value=0)
# # generate text based on slider value
# def square(x):
# return f'{x} squared is {x**2}'
# # bind the slider to the function and hold the output in a row
# row = pn.Column(pn.bind(square,simpleslider))
# # add both slider and row
# maincol.append(simpleslider)
# maincol.append(row)
# # variable to track state of visualization
# flip = False
# # function to either return the vis or a message
# def makeChartVisible(val):
# global flip # grab the variable outside the function
# if (flip == True):
# flip = not flip # flip to False
# return pn.pane.Vega(hp_mpg) # return the vis
# else:
# flip = not flip # flip to true and return text
# return pn.panel("Click the button to see the chart")
# # add a button and then create the binding
# btn = pn.widgets.Button(name='Click me')
# row = pn.Row(pn.bind(makeChartVisible, btn))
# # add button and new row to main column
# maincol.append(btn)
# maincol.append(row)
# # create a base chart
# basechart = alt.Chart(cars).mark_circle(size=80,opacity=0.5).encode(
# x='Horsepower:Q',
# y='Acceleration:Q',
# color="Origin:N"
# )
# # create something to hold the base chart
# currentoption = pn.panel(basechart)
# # create a selection widget
# select = pn.widgets.Select(name='Select', options=['Horsepower','Acceleration','Miles_per_Gallon'])
# # create a function to modify the basechart that is being
# # held in currentoption
# def changeOption(val):
# # grab what's there now
# chrt = currentoption.object
# # change the encoding based on val
# chrt = chrt.encode(
# y=val+":Q"
# )
# # replace old chart in currentoption with new one
# currentoption.object = chrt
# # append the selection
# maincol.append(select)
# # append the binding (in thise case nothing is being returned by changeOption, so...)
# chartchange = pn.Row(pn.bind(changeOption, select))
# # ... we need to also add the chart
# maincol.append(chartchange)
# maincol.append(currentoption)
# # add the main column to the template
# template.main.append(maincol)
# # Indicate that the template object is the "application" and serve it
# template.servable(title="SI649 Walkthrough")
import io
import random
from typing import List, Tuple
import aiohttp
import panel as pn
from PIL import Image
from transformers import CLIPModel, CLIPProcessor
pn.extension(design="bootstrap", sizing_mode="stretch_width")
ICON_URLS = {
"brand-github": "https://github.com/holoviz/panel",
"brand-twitter": "https://twitter.com/Panel_Org",
"brand-linkedin": "https://www.linkedin.com/company/panel-org",
"message-circle": "https://discourse.holoviz.org/",
"brand-discord": "https://discord.gg/AXRHnJU6sP",
}
async def random_url(_):
pet = random.choice(["cat", "dog"])
api_url = f"https://api.the{pet}api.com/v1/images/search"
async with aiohttp.ClientSession() as session:
async with session.get(api_url) as resp:
return (await resp.json())[0]["url"]
@pn.cache
def load_processor_model(
processor_name: str, model_name: str
) -> Tuple[CLIPProcessor, CLIPModel]:
processor = CLIPProcessor.from_pretrained(processor_name)
model = CLIPModel.from_pretrained(model_name)
return processor, model
async def open_image_url(image_url: str) -> Image:
async with aiohttp.ClientSession() as session:
async with session.get(image_url) as resp:
return Image.open(io.BytesIO(await resp.read()))
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
processor, model = load_processor_model(
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
)
inputs = processor(
text=class_items,
images=[image],
return_tensors="pt", # pytorch tensors
)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
return class_likelihoods[0]
async def process_inputs(class_names: List[str], image_url: str):
"""
High level function that takes in the user inputs and returns the
classification results as panel objects.
"""
try:
main.disabled = True
if not image_url:
yield "##### ⚠️ Provide an image URL"
return
yield "##### βš™ Fetching image and running model..."
try:
pil_img = await open_image_url(image_url)
img = pn.pane.Image(pil_img, height=400, align="center")
except Exception as e:
yield f"##### πŸ˜” Something went wrong, please try a different URL!"
return
class_items = class_names.split(",")
class_likelihoods = get_similarity_scores(class_items, pil_img)
# build the results column
results = pn.Column("##### πŸŽ‰ Here are the results!", img)
for class_item, class_likelihood in zip(class_items, class_likelihoods):
row_label = pn.widgets.StaticText(
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
)
row_bar = pn.indicators.Progress(
value=int(class_likelihood * 100),
sizing_mode="stretch_width",
bar_color="secondary",
margin=(0, 10),
design=pn.theme.Material,
)
results.append(pn.Column(row_label, row_bar))
yield results
finally:
main.disabled = False
# create widgets
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
image_url = pn.widgets.TextInput(
name="Image URL to classify",
value=pn.bind(random_url, randomize_url),
)
class_names = pn.widgets.TextInput(
name="Comma separated class names",
placeholder="Enter possible class names, e.g. cat, dog",
value="cat, dog, parrot",
)
input_widgets = pn.Column(
"##### 😊 Click randomize or paste a URL to start classifying!",
pn.Row(image_url, randomize_url),
class_names,
)
# add interactivity
interactive_result = pn.panel(
pn.bind(process_inputs, image_url=image_url, class_names=class_names),
height=600,
)
# add footer
footer_row = pn.Row(pn.Spacer(), align="center")
for icon, url in ICON_URLS.items():
href_button = pn.widgets.Button(icon=icon, width=35, height=35)
href_button.js_on_click(code=f"window.open('{url}')")
footer_row.append(href_button)
footer_row.append(pn.Spacer())
# create dashboard
main = pn.WidgetBox(
input_widgets,
interactive_result,
footer_row,
)
title = "Panel Demo - Image Classification"
pn.template.BootstrapTemplate(
title=title,
main=main,
main_max_width="min(50%, 698px)",
header_background="#F08080",
).servable(title=title)