si649_panel / app.py
chriskok3's picture
Updated APP with the walkthrough code
70cf329 verified
raw
history blame
8.53 kB
# load up the libraries
import panel as pn
import pandas as pd
import altair as alt
from vega_datasets import data
# we want to use bootstrap/template, tell Panel to load up what we need
pn.extension(design='bootstrap')
# we want to use vega, tell Panel to load up what we need
pn.extension('vega')
# create a basic template using bootstrap
template = pn.template.BootstrapTemplate(
title='SI649 Walkthrough',
)
# the main column will hold our key content
maincol = pn.Column()
# add some markdown to the main column
maincol.append("# Markdown Title")
maincol.append("I can format in cool ways. Like **bold** or *italics* or ***both*** or ~~strikethrough~~ or `code` or [links](https://panel.holoviz.org)")
maincol.append("I am writing a link [to the streamlit documentation page](https://docs.streamlit.io/en/stable/api.html)")
maincol.append('![alt text](https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Irises-Vincent_van_Gogh.jpg/314px-Irises-Vincent_van_Gogh.jpg)')
# load up a dataframe and show it in the main column
cars_url = "https://raw.githubusercontent.com/altair-viz/vega_datasets/master/vega_datasets/_data/cars.json"
cars = pd.read_json(cars_url)
temps = data.seattle_weather()
maincol.append(temps.head(10))
# create a basic chart
hp_mpg = alt.Chart(cars).mark_circle(size=80).encode(
x='Horsepower:Q',
y='Miles_per_Gallon:Q',
color='Origin:N'
)
# dispaly it in the main column
# maincol.append(hp_mpg)
# create a basic slider
simpleslider = pn.widgets.IntSlider(name='Simple Slider', start=0, end=100, value=0)
# generate text based on slider value
def square(x):
return f'{x} squared is {x**2}'
# bind the slider to the function and hold the output in a row
row = pn.Column(pn.bind(square,simpleslider))
# add both slider and row
maincol.append(simpleslider)
maincol.append(row)
# variable to track state of visualization
flip = False
# function to either return the vis or a message
def makeChartVisible(val):
global flip # grab the variable outside the function
if (flip == True):
flip = not flip # flip to False
return pn.pane.Vega(hp_mpg) # return the vis
else:
flip = not flip # flip to true and return text
return pn.panel("Click the button to see the chart")
# add a button and then create the binding
btn = pn.widgets.Button(name='Click me')
row = pn.Row(pn.bind(makeChartVisible, btn))
# add button and new row to main column
maincol.append(btn)
maincol.append(row)
# create a base chart
basechart = alt.Chart(cars).mark_circle(size=80,opacity=0.5).encode(
x='Horsepower:Q',
y='Acceleration:Q',
color="Origin:N"
)
# create something to hold the base chart
currentoption = pn.panel(basechart)
# create a selection widget
select = pn.widgets.Select(name='Select', options=['Horsepower','Acceleration','Miles_per_Gallon'])
# create a function to modify the basechart that is being
# held in currentoption
def changeOption(val):
# grab what's there now
chrt = currentoption.object
# change the encoding based on val
chrt = chrt.encode(
y=val+":Q"
)
# replace old chart in currentoption with new one
currentoption.object = chrt
# append the selection
maincol.append(select)
# append the binding (in thise case nothing is being returned by changeOption, so...)
chartchange = pn.Row(pn.bind(changeOption, select))
# ... we need to also add the chart
maincol.append(chartchange)
maincol.append(currentoption)
# add the main column to the template
template.main.append(maincol)
# Indicate that the template object is the "application" and serve it
template.servable(title="SI649 Walkthrough")
# import io
# import random
# from typing import List, Tuple
# import aiohttp
# import panel as pn
# from PIL import Image
# from transformers import CLIPModel, CLIPProcessor
# pn.extension(design="bootstrap", sizing_mode="stretch_width")
# ICON_URLS = {
# "brand-github": "https://github.com/holoviz/panel",
# "brand-twitter": "https://twitter.com/Panel_Org",
# "brand-linkedin": "https://www.linkedin.com/company/panel-org",
# "message-circle": "https://discourse.holoviz.org/",
# "brand-discord": "https://discord.gg/AXRHnJU6sP",
# }
# async def random_url(_):
# pet = random.choice(["cat", "dog"])
# api_url = f"https://api.the{pet}api.com/v1/images/search"
# async with aiohttp.ClientSession() as session:
# async with session.get(api_url) as resp:
# return (await resp.json())[0]["url"]
# @pn.cache
# def load_processor_model(
# processor_name: str, model_name: str
# ) -> Tuple[CLIPProcessor, CLIPModel]:
# processor = CLIPProcessor.from_pretrained(processor_name)
# model = CLIPModel.from_pretrained(model_name)
# return processor, model
# async def open_image_url(image_url: str) -> Image:
# async with aiohttp.ClientSession() as session:
# async with session.get(image_url) as resp:
# return Image.open(io.BytesIO(await resp.read()))
# def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
# processor, model = load_processor_model(
# "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
# )
# inputs = processor(
# text=class_items,
# images=[image],
# return_tensors="pt", # pytorch tensors
# )
# outputs = model(**inputs)
# logits_per_image = outputs.logits_per_image
# class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
# return class_likelihoods[0]
# async def process_inputs(class_names: List[str], image_url: str):
# """
# High level function that takes in the user inputs and returns the
# classification results as panel objects.
# """
# try:
# main.disabled = True
# if not image_url:
# yield "##### ⚠️ Provide an image URL"
# return
# yield "##### βš™ Fetching image and running model..."
# try:
# pil_img = await open_image_url(image_url)
# img = pn.pane.Image(pil_img, height=400, align="center")
# except Exception as e:
# yield f"##### πŸ˜” Something went wrong, please try a different URL!"
# return
# class_items = class_names.split(",")
# class_likelihoods = get_similarity_scores(class_items, pil_img)
# # build the results column
# results = pn.Column("##### πŸŽ‰ Here are the results!", img)
# for class_item, class_likelihood in zip(class_items, class_likelihoods):
# row_label = pn.widgets.StaticText(
# name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
# )
# row_bar = pn.indicators.Progress(
# value=int(class_likelihood * 100),
# sizing_mode="stretch_width",
# bar_color="secondary",
# margin=(0, 10),
# design=pn.theme.Material,
# )
# results.append(pn.Column(row_label, row_bar))
# yield results
# finally:
# main.disabled = False
# # create widgets
# randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
# image_url = pn.widgets.TextInput(
# name="Image URL to classify",
# value=pn.bind(random_url, randomize_url),
# )
# class_names = pn.widgets.TextInput(
# name="Comma separated class names",
# placeholder="Enter possible class names, e.g. cat, dog",
# value="cat, dog, parrot",
# )
# input_widgets = pn.Column(
# "##### 😊 Click randomize or paste a URL to start classifying!",
# pn.Row(image_url, randomize_url),
# class_names,
# )
# # add interactivity
# interactive_result = pn.panel(
# pn.bind(process_inputs, image_url=image_url, class_names=class_names),
# height=600,
# )
# # add footer
# footer_row = pn.Row(pn.Spacer(), align="center")
# for icon, url in ICON_URLS.items():
# href_button = pn.widgets.Button(icon=icon, width=35, height=35)
# href_button.js_on_click(code=f"window.open('{url}')")
# footer_row.append(href_button)
# footer_row.append(pn.Spacer())
# # create dashboard
# main = pn.WidgetBox(
# input_widgets,
# interactive_result,
# footer_row,
# )
# title = "Panel Demo - Image Classification"
# pn.template.BootstrapTemplate(
# title=title,
# main=main,
# main_max_width="min(50%, 698px)",
# header_background="#F08080",
# ).servable(title=title)