Spaces:
Runtime error
Runtime error
# supress warnings about future deprecations | |
import warnings | |
warnings.simplefilter(action='ignore', category=FutureWarning) | |
import pandas as pd | |
import altair as alt | |
import numpy as np | |
import pprint | |
import datetime as dt | |
from vega_datasets import data | |
import matplotlib.pyplot as plt | |
# Import panel and vega datasets | |
import panel as pn | |
import vega_datasets | |
df2=pd.read_csv("https://raw.githubusercontent.com/dallascard/SI649_public/main/altair_hw3/approval_topline.csv") | |
# fix the time stamps and reorganize the data to combine approve and disapprove into one column | |
df2['timestamp']=pd.to_datetime(df2['timestamp']) | |
df2=pd.melt(df2, id_vars=['president', 'subgroup', 'timestamp'], value_vars=['approve','disapprove']).rename(columns={'variable':'choice', 'value':'rate'}) | |
# Enable Panel extensions | |
pn.extension('vega') | |
# we want to use bootstrap/template, tell Panel to load up what we need | |
# pn.extension(design='bootstrap') | |
# Define a function to create and return a plot | |
def create_plot(subgroup='All polls', date_range=[df2['timestamp'].min(), df2['timestamp'].max()], moving_av_window=1): | |
# Downselection! | |
approval_df2 = df2.copy() | |
approval_df2 = approval_df2[approval_df2['subgroup'] == subgroup] | |
approval_df2 = approval_df2[approval_df2['choice'] == 'approve'] | |
# remove columns | |
approval_df2 = approval_df2.drop(columns=['choice', 'subgroup', 'president']) | |
# convert date_range to datetime | |
date_range = [pd.to_datetime(date_range[0]), pd.to_datetime(date_range[1])] | |
# narrow down dates | |
approval_df2 = approval_df2[ | |
(approval_df2['timestamp'] >= date_range[0]) & | |
(approval_df2['timestamp'] <= date_range[1]) | |
] | |
# Apply any required transformations to the data in pandas | |
smooth_data = approval_df2.sort_values('timestamp').rolling(window=moving_av_window, on='timestamp', center=True).mean().shift(-moving_av_window+1) | |
chart_data = approval_df2.sort_values('timestamp').copy() | |
# Line chart | |
line = alt.Chart(smooth_data).mark_line(color='red', size=2).encode( | |
x=alt.X('timestamp:T', scale=alt.Scale(domain=date_range)), | |
y=alt.Y('rate:Q', scale=alt.Scale(domain=[30, 60]), title='approve, mov_avg'), | |
) | |
# Scatter plot with individual polls | |
scatter = alt.Chart(chart_data).mark_point(size=2, opacity=0.7, color='grey').encode( | |
x=alt.X('timestamp:T', scale=alt.Scale(domain=date_range)), | |
y=alt.Y('rate:Q', scale=alt.Scale(domain=[30, 60])) | |
) | |
# Put them together | |
plot = alt.layer(scatter, line).resolve_scale(y='shared') | |
# Return the combined chart | |
return plot | |
# Create the selection widget | |
subgroup_select = pn.widgets.Select(name='Select subgroup', options=['Adults', 'All polls', 'Voters']) | |
# Create the slider for the date range | |
date_range_slider = pn.widgets.DateRangeSlider(name='Date range slider', end=df2['timestamp'].max(), start=df2['timestamp'].min(), value=(df2['timestamp'].min(), df2['timestamp'].max())) | |
# Create the slider for the moving average window | |
moving_av_slider = pn.widgets.IntSlider(name='Moving average window', start=1, end=100, value=1) | |
# Bind the widgets to the create_plot function | |
def reactive_plot(subgroup, date_range, moving_av_window): | |
return create_plot(subgroup, date_range, moving_av_window) | |
# Combine everything in a Panel Column to create an app | |
app = pn.Column(reactive_plot, subgroup_select, date_range_slider, moving_av_slider) | |
# Set the app to be servable | |
app.servable() | |