Spaces:
Running
Running
File size: 2,037 Bytes
728a6ed 5bd77b5 8bb6bcc 7f1aca2 4b990c7 b4db5b8 7f1aca2 070605d 7aa8186 9bfc50c 7aa8186 54fa46c 7b64b2c 8bb6bcc e16c1f3 faef71a e16c1f3 731de2f 5da936b e16c1f3 7b64b2c 7d34933 9def5da 7f1aca2 8e651c3 b08763f 9bfc50c 8e651c3 54fa46c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
# https://github.com/google-research/tensorflow-coder/blob/master/tf_coder/tf_coder_main.py
import streamlit as st
from tf_coder.value_search import colab_interface, value_search_settings
import io
from contextlib import redirect_stdout
from streamlit_ace import st_ace
st.set_page_config(page_icon='π©βπ»', layout="wide")
st.write('### Inputs')
inputs = st_ace(placeholder="The input tensor(s) specified as a dictionary", value="{'rows': [10, 20, 30],\n'cols': [1,2,3,4]}", language="python", theme="solarized_dark")
st.write('### Output')
output = st_ace(placeholder="The output tensor", value="[[11, 12, 13, 14],\n[21, 22, 23, 24],\n[31, 32, 33, 34]]", language="python", theme="solarized_dark")
st.write(eval(inputs))
st.sidebar.header("Settings:")
settings_kwargs = dict()
settings_kwargs["require_all_inputs_used"] = st.sidebar.checkbox("Require All Inputs", value=True)
settings_kwargs["only_minimal_solutions"] = st.sidebar.checkbox("Only Minimal Solutions", value=False)
settings_kwargs["max_solutions"] = st.sidebar.slider("Maximum number of solutions", value=1, min_value=1, step=1, max_value=256)
settings_kwargs["timeout"] = st.sidebar.slider("Timeout in seconds", value=300, min_value=1, step=10, max_value=300)
settings = value_search_settings.from_dict({
'timeout': settings_kwargs["timeout"],
'only_minimal_solutions': settings_kwargs["only_minimal_solutions"],
'max_solutions': settings_kwargs["max_solutions"],
'require_all_inputs_used': settings_kwargs["require_all_inputs_used"],
'require_one_input_used': not settings_kwargs["require_all_inputs_used"],
})
with io.StringIO() as buf, redirect_stdout(buf):
constants = []
description = 'add two vectors with broadcasting to get a matrix'
inputs = {'rows': [10, 20, 30],'cols': [1,2,3,4]}
results = colab_interface.run_value_search_from_colab(eval(inputs), [[11, 12, 13, 14],[21, 22, 23, 24],[31, 32, 33, 34]], constants, description, settings)
stdout = buf.getvalue()
st.code(stdout, language='bash') |