File size: 1,591 Bytes
728a6ed
5bd77b5
8bb6bcc
7f1aca2
 
 
731de2f
feb90ac
7d34933
7b64b2c
 
8bb6bcc
 
731de2f
5da936b
7d34933
 
7b64b2c
 
 
7d34933
9def5da
7f1aca2
8e651c3
 
 
 
 
 
 
 
 
b08763f
0d173c0
8e651c3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# https://github.com/google-research/tensorflow-coder/blob/master/tf_coder/tf_coder_main.py
import streamlit as st
from tf_coder.value_search import colab_interface, value_search_settings
import io
from contextlib import redirect_stdout

inputs = st.text_area('The input tensor(s) specified as key-value pairs', placeholder="{'rows': [10, 20, 30],'cols': [1,2,3,4]}")
  # The single desired output tensor.

st.sidebar.header("Settings:")
settings_kwargs = dict()
settings_kwargs["require_all_inputs_used"] = st.sidebar.checkbox("Require All Inputs", value=True)
settings_kwargs["max_solutions"] = st.sidebar.slider("Maximum number of solutions", value=1, min_value=1, step=1, max_value=10)
    
settings = value_search_settings.from_dict({
      'timeout': 300,
      'only_minimal_solutions': False,
      'max_solutions': settings_kwargs["max_solutions"],
      'require_all_inputs_used': settings_kwargs["require_all_inputs_used"],
      'require_one_input_used': not settings_kwargs["require_all_inputs_used"],
  })

with io.StringIO() as buf, redirect_stdout(buf):
    output = [[11, 12, 13, 14],
            [21, 22, 23, 24],
            [31, 32, 33, 34]]  

  # A list of relevant scalar constants (if any).
    constants = []

  # An English description of the tensor manipulation.
    description = 'add two vectors with broadcasting to get a matrix'
    inputs = {'rows': [10, 20, 30],'cols': [1,2,3,4]}
    results = colab_interface.run_value_search_from_colab(eval(inputs), output, constants, description, settings)
    stdout = buf.getvalue()
st.code(stdout, language='bash')