christopher's picture
Update app.py
7b64b2c
raw
history blame
1.55 kB
# https://github.com/google-research/tensorflow-coder/blob/master/tf_coder/tf_coder_main.py
import streamlit as st
from tf_coder.value_search import colab_interface
from tf_coder.value_search import value_search_settings
import io
from contextlib import redirect_stdout
inputs = st.text_area('The input tensor(s) specified as key-value pairs', placeholder="{'rows': [10, 20, 30],'cols': [1,2,3,4]}")
# The single desired output tensor.
st.sidebar.header("Settings:")
settings_kwargs = dict()
settings_kwargs["require_all_inputs_used"] = st.sidebar.checkbox("Require All")
settings_kwargs["max_solutions"] = st.sidebar.slider("Maximum number of solutions", value=1, min_value=1, step=1, max_value=256)
settings = value_search_settings.from_dict({
'timeout': 300,
'only_minimal_solutions': False,
'max_solutions': settings_kwargs["max_solutions"],
'require_all_inputs_used': settings_kwargs["require_all_inputs_used"],
'require_one_input_used': not settings_kwargs["require_all_inputs_used"],
})
with io.StringIO() as buf, redirect_stdout(buf):
output = [[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34]]
# A list of relevant scalar constants (if any).
constants = []
# An English description of the tensor manipulation.
description = 'add two vectors with broadcasting to get a matrix'
results = colab_interface.run_value_search_from_colab(eval(inputs), output, constants, description, settings)
stdout = buf.getvalue()
st.code(stdout, language='bash')