Spaces:
Running
Running
# Based on the following code demo: https://github.com/google-research/tensorflow-coder/blob/master/tf_coder/tf_coder_main.py | |
import streamlit as st | |
from tf_coder.value_search import colab_interface, value_search_settings | |
from streamlit_ace import st_ace | |
st.set_page_config(page_title="TensorFlow Coder", page_icon='π©βπ»', layout="wide") | |
st.title("π©βπ» TensorFlow Coder") | |
st.write('#') | |
st.write("[TensorFlow Coder](https://github.com/google-research/tensorflow-coder) is a program synthesis tool developed at Google Research by Kensen Shi, David Bieber and Rishabh Singh. It takes an example input-output tensor example and attempts to find the combination of TensorFlow ops that capture that transformation. Please cite the authors' [paper](https://github.com/google-research/tensorflow-coder/blob/master/README.md#citation) if you use their tool in your work. Also checkout the TensorFlow [Blog post](https://blog.tensorflow.org/2020/08/introducing-tensorflow-coder-tool.html) for more information and examples.") | |
col1, col2, col3 = st.columns([5, 5, 3]) | |
with col1: | |
st.write('#### Inputs') | |
inputs = st_ace(placeholder="The input tensor(s) specified as a dictionary", value="{'rows': [10, 20, 30],\n'cols': [1,2,3,4]}", language="python", theme="solarized_dark", auto_update=True) | |
with col2: | |
st.write('#### Output') | |
output = st_ace(placeholder="The output tensor", value="[[11, 12, 13, 14],\n[21, 22, 23, 24],\n[31, 32, 33, 34]]", language="python", theme="solarized_dark", auto_update=True) | |
with col3: | |
st.write('#### Constants') | |
constants = st_ace(placeholder="Optional list of scalar constants", value="[]", language="python", theme="solarized_dark", auto_update=True) | |
st.write("#### Description") | |
description = st.text_input(label="", placeholder="An optional natural language description of the operation", value="add two vectors with broadcasting to get a matrix") | |
with st.expander("βοΈ Search Options", expanded=False): | |
settings_kwargs = dict() | |
settings_kwargs["require_all_inputs_used"] = st.checkbox("Require All Inputs", value=True) | |
settings_kwargs["only_minimal_solutions"] = st.checkbox("Only Minimal Solutions", value=False) | |
settings_kwargs["max_solutions"] = st.slider("Maximum number of solutions", value=1, min_value=1, step=1, max_value=256) | |
settings_kwargs["timeout"] = st.slider("Timeout in seconds", value=300, min_value=1, step=10, max_value=300) | |
if st.button("π Search for Tensor Ops!"): | |
i = eval(inputs) | |
o = eval(output) | |
c = eval(constants) | |
settings = value_search_settings.from_dict({ | |
'timeout': settings_kwargs["timeout"], | |
'only_minimal_solutions': settings_kwargs["only_minimal_solutions"], | |
'max_solutions': settings_kwargs["max_solutions"], | |
'require_all_inputs_used': settings_kwargs["require_all_inputs_used"], | |
'require_one_input_used': not settings_kwargs["require_all_inputs_used"], | |
}) | |
with st.spinner("Searching for solution..."): | |
results = colab_interface.run_value_search_from_colab(i, o, c, description, settings) | |
num_solutions = len(results.solutions) | |
solution_solutions = " solutions" if num_solutions > 1 else " solution" | |
st.write(f"Found {num_solutions}{solution_solutions} in {results.total_time:.2f} seconds") | |
for solution in results.solutions: | |
st.code(solution.expression, language='python') |