import streamlit as st from tf_coder.value_search import colab_interface from tf_coder.value_search import value_search_settings def get_problem(): """Specifies a problem to run TF-Coder on. Edit this function!""" # A dict mapping input variable names to input tensors. inputs = { 'rows': [10, 20, 30], 'cols': [1, 2, 3, 4], } # The single desired output tensor. output = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34]] # A list of relevant scalar constants (if any). constants = [] # An English description of the tensor manipulation. description = 'add two vectors with broadcasting to get a matrix' return inputs, output, constants, description settings = value_search_settings.from_dict({ 'timeout': 300, 'only_minimal_solutions': False, 'max_solutions': 1, 'require_all_inputs_used': True, 'require_one_input_used': False, }) i = st.text_area("input tensor","second test") inputs, output, constants, description = get_problem() t = colab_interface.run_value_search_from_colab(inputs, output, constants, description, settings) for e in ["benchmark", "count", "index", "settings", "solutions", "statistics", "total_time", "value_set", "values_by_weight"]: st.write(eval(f"t.{e}")