File size: 7,948 Bytes
62ef5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# DCGAN-like generator and discriminator
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Parameter


def l2normalize(v, eps=1e-12):
    return v / (v.norm() + eps)


class SpectralNorm(nn.Module):
    def __init__(self, module, name="weight", power_iterations=1):
        super(SpectralNorm, self).__init__()
        self.module = module
        self.name = name
        self.power_iterations = power_iterations
        if not self._made_params():
            self._make_params()

    def _update_u_v(self):
        u = getattr(self.module, self.name + "_u")
        v = getattr(self.module, self.name + "_v")
        w = getattr(self.module, self.name + "_bar")

        height = w.data.shape[0]
        for _ in range(self.power_iterations):
            v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data))
            u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))

        sigma = u.dot(w.view(height, -1).mv(v))
        setattr(self.module, self.name, w / sigma.expand_as(w))

    def _made_params(self):
        try:
            u = getattr(self.module, self.name + "_u")
            v = getattr(self.module, self.name + "_v")
            w = getattr(self.module, self.name + "_bar")
            return True
        except AttributeError:
            return False

    def _make_params(self):
        w = getattr(self.module, self.name)

        height = w.data.shape[0]
        width = w.view(height, -1).data.shape[1]

        u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
        v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
        u.data = l2normalize(u.data)
        v.data = l2normalize(v.data)
        w_bar = Parameter(w.data)

        del self.module._parameters[self.name]

        self.module.register_parameter(self.name + "_u", u)
        self.module.register_parameter(self.name + "_v", v)
        self.module.register_parameter(self.name + "_bar", w_bar)

    def forward(self, *args):
        self._update_u_v()
        return self.module.forward(*args)


class Generator(nn.Module):
    def __init__(self, z_dim):
        super(Generator, self).__init__()
        self.z_dim = z_dim

        self.model = nn.Sequential(
            nn.ConvTranspose2d(z_dim, 512, 4, stride=1),
            nn.InstanceNorm2d(512),
            nn.ReLU(),
            nn.ConvTranspose2d(512, 256, 4, stride=2, padding=(1, 1)),
            nn.InstanceNorm2d(256),
            nn.ReLU(),
            nn.ConvTranspose2d(256, 128, 4, stride=2, padding=(1, 1)),
            nn.InstanceNorm2d(128),
            nn.ReLU(),
            nn.ConvTranspose2d(128, 64, 4, stride=2, padding=(1, 1)),
            nn.InstanceNorm2d(64),
            nn.ReLU(),
            nn.ConvTranspose2d(64, channels, 3, stride=1, padding=(1, 1)),
            nn.Tanh(),
        )

    def forward(self, z):
        return self.model(z.view(-1, self.z_dim, 1, 1))


channels = 3
leak = 0.1
w_g = 4


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.conv1 = SpectralNorm(nn.Conv2d(channels, 64, 3, stride=1, padding=(1, 1)))
        self.conv2 = SpectralNorm(nn.Conv2d(64, 64, 4, stride=2, padding=(1, 1)))
        self.conv3 = SpectralNorm(nn.Conv2d(64, 128, 3, stride=1, padding=(1, 1)))
        self.conv4 = SpectralNorm(nn.Conv2d(128, 128, 4, stride=2, padding=(1, 1)))
        self.conv5 = SpectralNorm(nn.Conv2d(128, 256, 3, stride=1, padding=(1, 1)))
        self.conv6 = SpectralNorm(nn.Conv2d(256, 256, 4, stride=2, padding=(1, 1)))
        self.conv7 = SpectralNorm(nn.Conv2d(256, 256, 3, stride=1, padding=(1, 1)))
        self.conv8 = SpectralNorm(nn.Conv2d(256, 512, 4, stride=2, padding=(1, 1)))
        self.fc = SpectralNorm(nn.Linear(w_g * w_g * 512, 1))

    def forward(self, x):
        m = x
        m = nn.LeakyReLU(leak)(self.conv1(m))
        m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(64)(self.conv2(m)))
        m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(128)(self.conv3(m)))
        m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(128)(self.conv4(m)))
        m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv5(m)))
        m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv6(m)))
        m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv7(m)))
        m = nn.LeakyReLU(leak)(self.conv8(m))

        return self.fc(m.view(-1, w_g * w_g * 512))


class Self_Attention(nn.Module):
    """Self attention Layer"""

    def __init__(self, in_dim):
        super(Self_Attention, self).__init__()
        self.chanel_in = in_dim

        self.query_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 1, kernel_size=1))
        self.key_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 1, kernel_size=1))
        self.value_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1))
        self.gamma = nn.Parameter(torch.zeros(1))

        self.softmax = nn.Softmax(dim=-1)  #

    def forward(self, x):
        """
        inputs :
            x : input feature maps( B X C X W X H)
        returns :
            out : self attention value + input feature
            attention: B X N X N (N is Width*Height)
        """
        m_batchsize, C, width, height = x.size()
        proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1)  # B X CX(N)
        proj_key = self.key_conv(x).view(m_batchsize, -1, width * height)  # B X C x (*W*H)
        energy = torch.bmm(proj_query, proj_key)  # transpose check
        attention = self.softmax(energy)  # BX (N) X (N)
        proj_value = self.value_conv(x).view(m_batchsize, -1, width * height)  # B X C X N

        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(m_batchsize, C, width, height)

        out = self.gamma * out + x
        return out

class Discriminator_x64_224(nn.Module):
    """
    Discriminative Network
    """

    def __init__(self, in_size=6, ndf=64):
        super(Discriminator_x64_224, self).__init__()
        self.in_size = in_size
        self.ndf = ndf

        self.layer1 = nn.Sequential(SpectralNorm(nn.Conv2d(self.in_size, self.ndf, 4, 2, 1)), nn.LeakyReLU(0.2, inplace=True))

        self.layer2 = nn.Sequential(
            SpectralNorm(nn.Conv2d(self.ndf, self.ndf, 4, 2, 1)),
            nn.InstanceNorm2d(self.ndf),
            nn.LeakyReLU(0.2, inplace=True),
        )
        self.attention = Self_Attention(self.ndf)
        self.layer3 = nn.Sequential(
            SpectralNorm(nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1)),
            nn.InstanceNorm2d(self.ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
        )
        self.layer4 = nn.Sequential(
            SpectralNorm(nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1)),
            nn.InstanceNorm2d(self.ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
        )
        self.layer5 = nn.Sequential(
            SpectralNorm(nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1)),
            nn.InstanceNorm2d(self.ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
        )
        self.layer6 = nn.Sequential(
            SpectralNorm(nn.Conv2d(self.ndf * 8, self.ndf * 16, 4, 2, 1)),
            nn.InstanceNorm2d(self.ndf * 16),
            nn.LeakyReLU(0.2, inplace=True),
        )

        self.last = SpectralNorm(nn.Conv2d(self.ndf * 16, 1, [3, 3], 1, 0))

    def forward(self, input):
        feature1 = self.layer1(input)
        feature2 = self.layer2(feature1)
        feature_attention = self.attention(feature2)
        feature3 = self.layer3(feature_attention)
        feature4 = self.layer4(feature3)
        feature5 = self.layer5(feature4)
        feature6 = self.layer6(feature5)
        output = self.last(feature6)
        output = F.avg_pool2d(output, output.size()[2:]).view(output.size()[0], -1)

        return output, feature4