Spaces:
Sleeping
Sleeping
File size: 17,893 Bytes
62ef5f4 3d85088 62ef5f4 3d85088 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from src.utils import uncenter_l
def find_local_patch(x, patch_size):
"""
> We take a tensor `x` and return a tensor `x_unfold` that contains all the patches of size
`patch_size` in `x`
Args:
x: the input tensor
patch_size: the size of the patch to be extracted.
"""
N, C, H, W = x.shape
x_unfold = F.unfold(x, kernel_size=(patch_size, patch_size), padding=(patch_size // 2, patch_size // 2), stride=(1, 1))
return x_unfold.view(N, x_unfold.shape[1], H, W)
class WeightedAverage(nn.Module):
def __init__(
self,
):
super(WeightedAverage, self).__init__()
def forward(self, x_lab, patch_size=3, alpha=1, scale_factor=1):
"""
It takes a 3-channel image (L, A, B) and returns a 2-channel image (A, B) where each pixel is a
weighted average of the A and B values of the pixels in a 3x3 neighborhood around it
Args:
x_lab: the input image in LAB color space
patch_size: the size of the patch to use for the local average. Defaults to 3
alpha: the higher the alpha, the smoother the output. Defaults to 1
scale_factor: the scale factor of the input image. Defaults to 1
Returns:
The output of the forward function is a tensor of size (batch_size, 2, height, width)
"""
# alpha=0: less smooth; alpha=inf: smoother
x_lab = F.interpolate(x_lab, scale_factor=scale_factor)
l = x_lab[:, 0:1, :, :]
a = x_lab[:, 1:2, :, :]
b = x_lab[:, 2:3, :, :]
local_l = find_local_patch(l, patch_size)
local_a = find_local_patch(a, patch_size)
local_b = find_local_patch(b, patch_size)
local_difference_l = (local_l - l) ** 2
correlation = nn.functional.softmax(-1 * local_difference_l / alpha, dim=1)
return torch.cat(
(
torch.sum(correlation * local_a, dim=1, keepdim=True),
torch.sum(correlation * local_b, dim=1, keepdim=True),
),
1,
)
class WeightedAverage_color(nn.Module):
"""
smooth the image according to the color distance in the LAB space
"""
def __init__(
self,
):
super(WeightedAverage_color, self).__init__()
def forward(self, x_lab, x_lab_predict, patch_size=3, alpha=1, scale_factor=1):
"""
It takes the predicted a and b channels, and the original a and b channels, and finds the
weighted average of the predicted a and b channels based on the similarity of the original a and
b channels to the predicted a and b channels
Args:
x_lab: the input image in LAB color space
x_lab_predict: the predicted LAB image
patch_size: the size of the patch to use for the local color correction. Defaults to 3
alpha: controls the smoothness of the output. Defaults to 1
scale_factor: the scale factor of the input image. Defaults to 1
Returns:
The return is the weighted average of the local a and b channels.
"""
""" alpha=0: less smooth; alpha=inf: smoother """
x_lab = F.interpolate(x_lab, scale_factor=scale_factor)
l = uncenter_l(x_lab[:, 0:1, :, :])
a = x_lab[:, 1:2, :, :]
b = x_lab[:, 2:3, :, :]
a_predict = x_lab_predict[:, 1:2, :, :]
b_predict = x_lab_predict[:, 2:3, :, :]
local_l = find_local_patch(l, patch_size)
local_a = find_local_patch(a, patch_size)
local_b = find_local_patch(b, patch_size)
local_a_predict = find_local_patch(a_predict, patch_size)
local_b_predict = find_local_patch(b_predict, patch_size)
local_color_difference = (local_l - l) ** 2 + (local_a - a) ** 2 + (local_b - b) ** 2
# so that sum of weights equal to 1
correlation = nn.functional.softmax(-1 * local_color_difference / alpha, dim=1)
return torch.cat(
(
torch.sum(correlation * local_a_predict, dim=1, keepdim=True),
torch.sum(correlation * local_b_predict, dim=1, keepdim=True),
),
1,
)
class NonlocalWeightedAverage(nn.Module):
def __init__(
self,
):
super(NonlocalWeightedAverage, self).__init__()
def forward(self, x_lab, feature, patch_size=3, alpha=0.1, scale_factor=1):
"""
It takes in a feature map and a label map, and returns a smoothed label map
Args:
x_lab: the input image in LAB color space
feature: the feature map of the input image
patch_size: the size of the patch to be used for the correlation matrix. Defaults to 3
alpha: the higher the alpha, the smoother the output.
scale_factor: the scale factor of the input image. Defaults to 1
Returns:
weighted_ab is the weighted ab channel of the image.
"""
# alpha=0: less smooth; alpha=inf: smoother
# input feature is normalized feature
x_lab = F.interpolate(x_lab, scale_factor=scale_factor)
batch_size, channel, height, width = x_lab.shape
feature = F.interpolate(feature, size=(height, width))
batch_size = x_lab.shape[0]
x_ab = x_lab[:, 1:3, :, :].view(batch_size, 2, -1)
x_ab = x_ab.permute(0, 2, 1)
local_feature = find_local_patch(feature, patch_size)
local_feature = local_feature.view(batch_size, local_feature.shape[1], -1)
correlation_matrix = torch.matmul(local_feature.permute(0, 2, 1), local_feature)
correlation_matrix = nn.functional.softmax(correlation_matrix / alpha, dim=-1)
weighted_ab = torch.matmul(correlation_matrix, x_ab)
weighted_ab = weighted_ab.permute(0, 2, 1).contiguous()
weighted_ab = weighted_ab.view(batch_size, 2, height, width)
return weighted_ab
class CorrelationLayer(nn.Module):
def __init__(self, search_range):
super(CorrelationLayer, self).__init__()
self.search_range = search_range
def forward(self, x1, x2, alpha=1, raw_output=False, metric="similarity"):
"""
It takes two tensors, x1 and x2, and returns a tensor of shape (batch_size, (search_range * 2 +
1) ** 2, height, width) where each element is the dot product of the corresponding patch in x1
and x2
Args:
x1: the first image
x2: the image to be warped
alpha: the temperature parameter for the softmax function. Defaults to 1
raw_output: if True, return the raw output of the network, otherwise return the softmax
output. Defaults to False
metric: "similarity" or "subtraction". Defaults to similarity
Returns:
The output of the forward function is a softmax of the correlation volume.
"""
shape = list(x1.size())
shape[1] = (self.search_range * 2 + 1) ** 2
cv = torch.zeros(shape).to(torch.device("cuda"))
for i in range(-self.search_range, self.search_range + 1):
for j in range(-self.search_range, self.search_range + 1):
if i < 0:
slice_h, slice_h_r = slice(None, i), slice(-i, None)
elif i > 0:
slice_h, slice_h_r = slice(i, None), slice(None, -i)
else:
slice_h, slice_h_r = slice(None), slice(None)
if j < 0:
slice_w, slice_w_r = slice(None, j), slice(-j, None)
elif j > 0:
slice_w, slice_w_r = slice(j, None), slice(None, -j)
else:
slice_w, slice_w_r = slice(None), slice(None)
if metric == "similarity":
cv[:, (self.search_range * 2 + 1) * i + j, slice_h, slice_w] = (
x1[:, :, slice_h, slice_w] * x2[:, :, slice_h_r, slice_w_r]
).sum(1)
else: # patchwise subtraction
cv[:, (self.search_range * 2 + 1) * i + j, slice_h, slice_w] = -(
(x1[:, :, slice_h, slice_w] - x2[:, :, slice_h_r, slice_w_r]) ** 2
).sum(1)
# TODO sigmoid?
if raw_output:
return cv
else:
return nn.functional.softmax(cv / alpha, dim=1)
class WTA_scale(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""
@staticmethod
def forward(ctx, input, scale=1e-4):
"""
In the forward pass we receive a Tensor containing the input and return a
Tensor containing the output. You can cache arbitrary Tensors for use in the
backward pass using the save_for_backward method.
"""
activation_max, index_max = torch.max(input, -1, keepdim=True)
input_scale = input * scale # default: 1e-4
# input_scale = input * scale # default: 1e-4
output_max_scale = torch.where(input == activation_max, input, input_scale)
mask = (input == activation_max).type(torch.float)
ctx.save_for_backward(input, mask)
return output_max_scale
@staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
input, mask = ctx.saved_tensors
mask_ones = torch.ones_like(mask)
mask_small_ones = torch.ones_like(mask) * 1e-4
# mask_small_ones = torch.ones_like(mask) * 1e-4
grad_scale = torch.where(mask == 1, mask_ones, mask_small_ones)
grad_input = grad_output.clone() * grad_scale
return grad_input, None
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, padding=1, stride=1):
super(ResidualBlock, self).__init__()
self.padding1 = nn.ReflectionPad2d(padding)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=0, stride=stride)
self.bn1 = nn.InstanceNorm2d(out_channels)
self.prelu = nn.PReLU()
self.padding2 = nn.ReflectionPad2d(padding)
self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=0, stride=stride)
self.bn2 = nn.InstanceNorm2d(out_channels)
def forward(self, x):
residual = x
out = self.padding1(x)
out = self.conv1(out)
out = self.bn1(out)
out = self.prelu(out)
out = self.padding2(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.prelu(out)
return out
class WarpNet(nn.Module):
"""input is Al, Bl, channel = 1, range~[0,255]"""
def __init__(self, feature_channel=128):
super(WarpNet, self).__init__()
self.feature_channel = feature_channel
self.in_channels = self.feature_channel * 4
self.inter_channels = 256
# 44*44
self.layer2_1 = nn.Sequential(
nn.ReflectionPad2d(1),
# nn.Conv2d(128, 128, kernel_size=3, padding=0, stride=1),
# nn.Conv2d(96, 128, kernel_size=3, padding=20, stride=1),
nn.Conv2d(96, 128, kernel_size=3, padding=0, stride=1),
nn.InstanceNorm2d(128),
nn.PReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(128, self.feature_channel, kernel_size=3, padding=0, stride=2),
nn.InstanceNorm2d(self.feature_channel),
nn.PReLU(),
nn.Dropout(0.2),
)
self.layer3_1 = nn.Sequential(
nn.ReflectionPad2d(1),
# nn.Conv2d(256, 128, kernel_size=3, padding=0, stride=1),
# nn.Conv2d(192, 128, kernel_size=3, padding=10, stride=1),
nn.Conv2d(192, 128, kernel_size=3, padding=0, stride=1),
nn.InstanceNorm2d(128),
nn.PReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(128, self.feature_channel, kernel_size=3, padding=0, stride=1),
nn.InstanceNorm2d(self.feature_channel),
nn.PReLU(),
nn.Dropout(0.2),
)
# 22*22->44*44
self.layer4_1 = nn.Sequential(
nn.ReflectionPad2d(1),
# nn.Conv2d(512, 256, kernel_size=3, padding=0, stride=1),
# nn.Conv2d(384, 256, kernel_size=3, padding=5, stride=1),
nn.Conv2d(384, 256, kernel_size=3, padding=0, stride=1),
nn.InstanceNorm2d(256),
nn.PReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(256, self.feature_channel, kernel_size=3, padding=0, stride=1),
nn.InstanceNorm2d(self.feature_channel),
nn.PReLU(),
nn.Upsample(scale_factor=2),
nn.Dropout(0.2),
)
# 11*11->44*44
self.layer5_1 = nn.Sequential(
nn.ReflectionPad2d(1),
# nn.Conv2d(1024, 256, kernel_size=3, padding=0, stride=1),
# nn.Conv2d(768, 256, kernel_size=2, padding=2, stride=1),
nn.Conv2d(768, 256, kernel_size=3, padding=0, stride=1),
nn.InstanceNorm2d(256),
nn.PReLU(),
nn.Upsample(scale_factor=2),
nn.ReflectionPad2d(1),
nn.Conv2d(256, self.feature_channel, kernel_size=3, padding=0, stride=1),
nn.InstanceNorm2d(self.feature_channel),
nn.PReLU(),
nn.Upsample(scale_factor=2),
nn.Dropout(0.2),
)
self.layer = nn.Sequential(
ResidualBlock(self.feature_channel * 4, self.feature_channel * 4, kernel_size=3, padding=1, stride=1),
ResidualBlock(self.feature_channel * 4, self.feature_channel * 4, kernel_size=3, padding=1, stride=1),
ResidualBlock(self.feature_channel * 4, self.feature_channel * 4, kernel_size=3, padding=1, stride=1),
)
self.theta = nn.Conv2d(
in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0
)
self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0)
self.upsampling = nn.Upsample(scale_factor=4)
def forward(
self,
B_lab_map,
A_relu2_1,
A_relu3_1,
A_relu4_1,
A_relu5_1,
B_relu2_1,
B_relu3_1,
B_relu4_1,
B_relu5_1,
temperature=0.001 * 5,
detach_flag=False,
WTA_scale_weight=1,
):
batch_size = B_lab_map.shape[0]
channel = B_lab_map.shape[1]
image_height = B_lab_map.shape[2]
image_width = B_lab_map.shape[3]
feature_height = int(image_height / 4)
feature_width = int(image_width / 4)
# scale feature size to 44*44
A_feature2_1 = self.layer2_1(A_relu2_1)
B_feature2_1 = self.layer2_1(B_relu2_1)
A_feature3_1 = self.layer3_1(A_relu3_1)
B_feature3_1 = self.layer3_1(B_relu3_1)
A_feature4_1 = self.layer4_1(A_relu4_1)
B_feature4_1 = self.layer4_1(B_relu4_1)
A_feature5_1 = self.layer5_1(A_relu5_1)
B_feature5_1 = self.layer5_1(B_relu5_1)
# concatenate features
if A_feature5_1.shape[2] != A_feature2_1.shape[2] or A_feature5_1.shape[3] != A_feature2_1.shape[3]:
A_feature5_1 = F.pad(A_feature5_1, (0, 0, 1, 1), "replicate")
B_feature5_1 = F.pad(B_feature5_1, (0, 0, 1, 1), "replicate")
A_features = self.layer(torch.cat((A_feature2_1, A_feature3_1, A_feature4_1, A_feature5_1), 1))
B_features = self.layer(torch.cat((B_feature2_1, B_feature3_1, B_feature4_1, B_feature5_1), 1))
# pairwise cosine similarity
theta = self.theta(A_features).view(batch_size, self.inter_channels, -1) # 2*256*(feature_height*feature_width)
theta = theta - theta.mean(dim=-1, keepdim=True) # center the feature
theta_norm = torch.norm(theta, 2, 1, keepdim=True) + sys.float_info.epsilon
theta = torch.div(theta, theta_norm)
theta_permute = theta.permute(0, 2, 1) # 2*(feature_height*feature_width)*256
phi = self.phi(B_features).view(batch_size, self.inter_channels, -1) # 2*256*(feature_height*feature_width)
phi = phi - phi.mean(dim=-1, keepdim=True) # center the feature
phi_norm = torch.norm(phi, 2, 1, keepdim=True) + sys.float_info.epsilon
phi = torch.div(phi, phi_norm)
f = torch.matmul(theta_permute, phi) # 2*(feature_height*feature_width)*(feature_height*feature_width)
if detach_flag:
f = f.detach()
f_similarity = f.unsqueeze_(dim=1)
similarity_map = torch.max(f_similarity, -1, keepdim=True)[0]
similarity_map = similarity_map.view(batch_size, 1, feature_height, feature_width)
# f can be negative
f_WTA = f if WTA_scale_weight == 1 else WTA_scale.apply(f, WTA_scale_weight)
f_WTA = f_WTA / temperature
f_div_C = F.softmax(f_WTA.squeeze_(), dim=-1) # 2*1936*1936;
# downsample the reference color
B_lab = F.avg_pool2d(B_lab_map, 4)
B_lab = B_lab.view(batch_size, channel, -1)
B_lab = B_lab.permute(0, 2, 1) # 2*1936*channel
# multiply the corr map with color
y = torch.matmul(f_div_C, B_lab) # 2*1936*channel
y = y.permute(0, 2, 1).contiguous()
y = y.view(batch_size, channel, feature_height, feature_width) # 2*3*44*44
y = self.upsampling(y)
similarity_map = self.upsampling(similarity_map)
return y, similarity_map |