File size: 7,502 Bytes
3d85088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ef5f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import _load_weights
from timm.models.layers import trunc_normal_
from typing import List

from src.models.vit.utils import init_weights, resize_pos_embed
from src.models.vit.blocks import Block
from src.models.vit.decoder import DecoderLinear


class PatchEmbedding(nn.Module):
    def __init__(self, image_size, patch_size, embed_dim, channels):
        super().__init__()

        self.image_size = image_size
        if image_size[0] % patch_size != 0 or image_size[1] % patch_size != 0:
            raise ValueError("image dimensions must be divisible by the patch size")
        self.grid_size = image_size[0] // patch_size, image_size[1] // patch_size
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.patch_size = patch_size

        self.proj = nn.Conv2d(channels, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, im):
        B, C, H, W = im.shape
        x = self.proj(im).flatten(2).transpose(1, 2)
        return x


class VisionTransformer(nn.Module):
    def __init__(

        self,

        image_size,

        patch_size,

        n_layers,

        d_model,

        d_ff,

        n_heads,

        n_cls,

        dropout=0.1,

        drop_path_rate=0.0,

        distilled=False,

        channels=3,

    ):
        super().__init__()
        self.patch_embed = PatchEmbedding(
            image_size,
            patch_size,
            d_model,
            channels,
        )
        self.patch_size = patch_size
        self.n_layers = n_layers
        self.d_model = d_model
        self.d_ff = d_ff
        self.n_heads = n_heads
        self.dropout = nn.Dropout(dropout)
        self.n_cls = n_cls

        # cls and pos tokens
        self.cls_token = nn.Parameter(torch.zeros(1, 1, d_model))
        self.distilled = distilled
        if self.distilled:
            self.dist_token = nn.Parameter(torch.zeros(1, 1, d_model))
            self.pos_embed = nn.Parameter(torch.randn(1, self.patch_embed.num_patches + 2, d_model))
            self.head_dist = nn.Linear(d_model, n_cls)
        else:
            self.pos_embed = nn.Parameter(torch.randn(1, self.patch_embed.num_patches + 1, d_model))

        # transformer blocks
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)]
        self.blocks = nn.ModuleList([Block(d_model, n_heads, d_ff, dropout, dpr[i]) for i in range(n_layers)])

        # output head
        self.norm = nn.LayerNorm(d_model)
        self.head = nn.Linear(d_model, n_cls)

        trunc_normal_(self.pos_embed, std=0.02)
        trunc_normal_(self.cls_token, std=0.02)
        if self.distilled:
            trunc_normal_(self.dist_token, std=0.02)
        self.pre_logits = nn.Identity()

        self.apply(init_weights)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed", "cls_token", "dist_token"}

    @torch.jit.ignore()
    def load_pretrained(self, checkpoint_path, prefix=""):
        _load_weights(self, checkpoint_path, prefix)

    def forward(self, im, head_out_idx: List[int], n_dim_output=3, return_features=False):
        B, _, H, W = im.shape
        PS = self.patch_size
        assert n_dim_output == 3 or n_dim_output == 4, "n_dim_output must be 3 or 4"
        x = self.patch_embed(im)
        cls_tokens = self.cls_token.expand(B, -1, -1)
        if self.distilled:
            dist_tokens = self.dist_token.expand(B, -1, -1)
            x = torch.cat((cls_tokens, dist_tokens, x), dim=1)
        else:
            x = torch.cat((cls_tokens, x), dim=1)

        pos_embed = self.pos_embed
        num_extra_tokens = 1 + self.distilled
        if x.shape[1] != pos_embed.shape[1]:
            pos_embed = resize_pos_embed(
                pos_embed,
                self.patch_embed.grid_size,
                (H // PS, W // PS),
                num_extra_tokens,
            )
        x = x + pos_embed
        x = self.dropout(x)
        device = x.device

        if n_dim_output == 3:
            heads_out = torch.zeros(size=(len(head_out_idx), B, (H // PS) ** 2 + 1, self.d_model)).to(device)
        else:
            heads_out = torch.zeros(size=(len(head_out_idx), B, self.d_model, H // PS, H // PS)).to(device)
        self.register_buffer("heads_out", heads_out)

        head_idx = 0
        for idx_layer, blk in enumerate(self.blocks):
            x = blk(x)
            if idx_layer in head_out_idx:
                if n_dim_output == 3:
                    heads_out[head_idx] = x
                else:
                    heads_out[head_idx] = x[:, 1:, :].reshape((-1, 24, 24, self.d_model)).permute(0, 3, 1, 2)
                head_idx += 1

        x = self.norm(x)

        if return_features:
            return heads_out

        if self.distilled:
            x, x_dist = x[:, 0], x[:, 1]
            x = self.head(x)
            x_dist = self.head_dist(x_dist)
            x = (x + x_dist) / 2
        else:
            x = x[:, 0]
            x = self.head(x)
        return x

    def get_attention_map(self, im, layer_id):
        if layer_id >= self.n_layers or layer_id < 0:
            raise ValueError(f"Provided layer_id: {layer_id} is not valid. 0 <= {layer_id} < {self.n_layers}.")
        B, _, H, W = im.shape
        PS = self.patch_size

        x = self.patch_embed(im)
        cls_tokens = self.cls_token.expand(B, -1, -1)
        if self.distilled:
            dist_tokens = self.dist_token.expand(B, -1, -1)
            x = torch.cat((cls_tokens, dist_tokens, x), dim=1)
        else:
            x = torch.cat((cls_tokens, x), dim=1)

        pos_embed = self.pos_embed
        num_extra_tokens = 1 + self.distilled
        if x.shape[1] != pos_embed.shape[1]:
            pos_embed = resize_pos_embed(
                pos_embed,
                self.patch_embed.grid_size,
                (H // PS, W // PS),
                num_extra_tokens,
            )
        x = x + pos_embed

        for i, blk in enumerate(self.blocks):
            if i < layer_id:
                x = blk(x)
            else:
                return blk(x, return_attention=True)


class FeatureTransform(nn.Module):
    def __init__(self, img_size, d_encoder, nls_list=[128, 256, 512, 512], scale_factor_list=[8, 4, 2, 1]):
        super(FeatureTransform, self).__init__()
        self.img_size = img_size

        self.decoder_0 = DecoderLinear(n_cls=nls_list[0], d_encoder=d_encoder, scale_factor=scale_factor_list[0])
        self.decoder_1 = DecoderLinear(n_cls=nls_list[1], d_encoder=d_encoder, scale_factor=scale_factor_list[1])
        self.decoder_2 = DecoderLinear(n_cls=nls_list[2], d_encoder=d_encoder, scale_factor=scale_factor_list[2])
        self.decoder_3 = DecoderLinear(n_cls=nls_list[3], d_encoder=d_encoder, scale_factor=scale_factor_list[3])

    def forward(self, x_list):
        feat_3 = self.decoder_3(x_list[3][:, 1:, :], self.img_size)  # (2, 512, 24, 24)
        feat_2 = self.decoder_2(x_list[2][:, 1:, :], self.img_size)  # (2, 512, 48, 48)
        feat_1 = self.decoder_1(x_list[1][:, 1:, :], self.img_size)  # (2, 256, 96, 96)
        feat_0 = self.decoder_0(x_list[0][:, 1:, :], self.img_size)  # (2, 128, 192, 192)
        return feat_0, feat_1, feat_2, feat_3