Spaces:
Sleeping
Sleeping
File size: 7,912 Bytes
62ef5f4 efb56b8 62ef5f4 efb56b8 62ef5f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import numpy as np
import shutil
import os
import argparse
import torch
import glob
from tqdm import tqdm
from PIL import Image
from collections import OrderedDict
from src.models.vit.config import load_config
import torchvision.transforms as transforms
import cv2
from skimage import io
from src.models.CNN.ColorVidNet import GeneralColorVidNet
from src.models.vit.embed import GeneralEmbedModel
from src.models.CNN.NonlocalNet import GeneralWarpNet
from src.models.CNN.FrameColor import frame_colorization
from src.utils import (
RGB2Lab,
ToTensor,
Normalize,
uncenter_l,
tensor_lab2rgb,
SquaredPadding,
UnpaddingSquare
)
import gradio as gr
def load_params(ckpt_file):
params = torch.load(ckpt_file, map_location=device)
new_params = []
for key, value in params.items():
new_params.append((key, value))
return OrderedDict(new_params)
def custom_transform(transforms, img):
for transform in transforms:
if isinstance(transform, SquaredPadding):
img,padding=transform(img, return_paddings=True)
else:
img = transform(img)
return img.to(device), padding
def save_frames(predicted_rgb, video_name, frame_name):
if predicted_rgb is not None:
predicted_rgb = np.clip(predicted_rgb, 0, 255).astype(np.uint8)
# frame_path_parts = frame_path.split(os.sep)
# if os.path.exists(os.path.join(OUTPUT_RESULT_PATH, frame_path_parts[-2])):
# shutil.rmtree(os.path.join(OUTPUT_RESULT_PATH, frame_path_parts[-2]))
# os.makedirs(os.path.join(OUTPUT_RESULT_PATH, frame_path_parts[-2]), exist_ok=True)
predicted_rgb = np.transpose(predicted_rgb, (1,2,0))
pil_img = Image.fromarray(predicted_rgb)
pil_img.save(os.path.join(OUTPUT_RESULT_PATH, video_name, frame_name))
def extract_frames_from_video(video_path):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
# remove if exists folder
output_frames_path = os.path.join(INPUT_VIDEO_FRAMES_PATH, os.path.basename(video_path))
if os.path.exists(output_frames_path):
shutil.rmtree(output_frames_path)
# make new folder
os.makedirs(output_frames_path)
currentframe = 0
frame_path_list = []
while(True):
# reading from frame
ret,frame = cap.read()
if ret:
name = os.path.join(output_frames_path, f'{currentframe:09d}.jpg')
frame_path_list.append(name)
cv2.imwrite(name, frame)
currentframe += 1
else:
break
cap.release()
cv2.destroyAllWindows()
return frame_path_list, fps
def combine_frames_from_folder(frames_list_path, fps = 30):
frames_list = glob.glob(f'{frames_list_path}/*.jpg')
frames_list.sort()
sample_shape = cv2.imread(frames_list[0]).shape
output_video_path = os.path.join(frames_list_path, 'output_video.mp4')
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (sample_shape[1], sample_shape[0]))
for filename in frames_list:
img = cv2.imread(filename)
out.write(img)
out.release()
return output_video_path
def upscale_image(I_current_rgb, I_current_ab_predict):
H, W = I_current_rgb.size
high_lab_transforms = [
SquaredPadding(target_size=max(H,W)),
RGB2Lab(),
ToTensor(),
Normalize()
]
# current_frame_pil_rgb = Image.fromarray(np.clip(I_current_rgb.squeeze(0).permute(1,2,0).cpu().numpy() * 255, 0, 255).astype('uint8'))
high_lab_current, paddings = custom_transform(high_lab_transforms, I_current_rgb)
high_lab_current = torch.unsqueeze(high_lab_current,dim=0).to(device)
high_l_current = high_lab_current[:, 0:1, :, :]
high_ab_current = high_lab_current[:, 1:3, :, :]
upsampler = torch.nn.Upsample(scale_factor=max(H,W)/224,mode="bilinear")
high_ab_predict = upsampler(I_current_ab_predict)
I_predict_rgb = tensor_lab2rgb(torch.cat((uncenter_l(high_l_current), high_ab_predict), dim=1))
upadded = UnpaddingSquare()
I_predict_rgb = upadded(I_predict_rgb, paddings)
return I_predict_rgb
def colorize_video(video_path, ref_np):
frames_list, fps = extract_frames_from_video(video_path)
frame_ref = Image.fromarray(ref_np).convert("RGB")
I_last_lab_predict = None
IB_lab, IB_paddings = custom_transform(transforms, frame_ref)
IB_lab = IB_lab.unsqueeze(0).to(device)
IB_l = IB_lab[:, 0:1, :, :]
IB_ab = IB_lab[:, 1:3, :, :]
with torch.no_grad():
I_reference_lab = IB_lab
I_reference_l = I_reference_lab[:, 0:1, :, :]
I_reference_ab = I_reference_lab[:, 1:3, :, :]
I_reference_rgb = tensor_lab2rgb(torch.cat((uncenter_l(I_reference_l), I_reference_ab), dim=1)).to(device)
features_B = embed_net(I_reference_rgb)
video_path_parts = frames_list[0].split(os.sep)
if os.path.exists(os.path.join(OUTPUT_RESULT_PATH, video_path_parts[-2])):
shutil.rmtree(os.path.join(OUTPUT_RESULT_PATH, video_path_parts[-2]))
os.makedirs(os.path.join(OUTPUT_RESULT_PATH, video_path_parts[-2]), exist_ok=True)
for frame_path in tqdm(frames_list):
curr_frame = Image.open(frame_path).convert("RGB")
IA_lab, IA_paddings = custom_transform(transforms, curr_frame)
IA_lab = IA_lab.unsqueeze(0).to(device)
IA_l = IA_lab[:, 0:1, :, :]
IA_ab = IA_lab[:, 1:3, :, :]
if I_last_lab_predict is None:
I_last_lab_predict = torch.zeros_like(IA_lab).to(device)
with torch.no_grad():
I_current_lab = IA_lab
I_current_ab_predict, _ = frame_colorization(
IA_l,
I_reference_lab,
I_last_lab_predict,
features_B,
embed_net,
nonlocal_net,
colornet,
luminance_noise=0,
temperature=1e-10,
joint_training=False
)
I_last_lab_predict = torch.cat((IA_l, I_current_ab_predict), dim=1)
# IA_predict_rgb = tensor_lab2rgb(torch.cat((uncenter_l(IA_l), I_current_ab_predict), dim=1))
IA_predict_rgb = upscale_image(curr_frame, I_current_ab_predict)
#IA_predict_rgb = torch.nn.functional.upsample_bilinear(IA_predict_rgb, scale_factor=2)
save_frames(IA_predict_rgb.squeeze(0).cpu().numpy() * 255, video_path_parts[-2], os.path.basename(frame_path))
return combine_frames_from_folder(os.path.join(OUTPUT_RESULT_PATH, video_path_parts[-2]), fps)
if __name__ == '__main__':
# Init global variables
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
INPUT_VIDEO_FRAMES_PATH = 'inputs'
OUTPUT_RESULT_PATH = 'outputs'
weight_path = 'checkpoints'
embed_net=GeneralEmbedModel(pretrained_model="swin-tiny", device=device).to(device)
nonlocal_net = GeneralWarpNet(feature_channel=128).to(device)
colornet=GeneralColorVidNet(7).to(device)
embed_net.eval()
nonlocal_net.eval()
colornet.eval()
# Load weights
# embed_net_params = load_params(os.path.join(weight_path, "embed_net.pth"))
nonlocal_net_params = load_params(os.path.join(weight_path, "nonlocal_net.pth"))
colornet_params = load_params(os.path.join(weight_path, "colornet.pth"))
# embed_net.load_state_dict(embed_net_params, strict=True)
nonlocal_net.load_state_dict(nonlocal_net_params, strict=True)
colornet.load_state_dict(colornet_params, strict=True)
transforms = [SquaredPadding(target_size=224),
RGB2Lab(),
ToTensor(),
Normalize()]
#examples = [[vid, ref] for vid, ref in zip(sorted(glob.glob('examples/*/*.mp4')), sorted(glob.glob('examples/*/*.jpg')))]
demo = gr.Interface(colorize_video,
inputs=[gr.Video(), gr.Image()],
outputs="playable_video")#,
#examples=examples,
#cache_examples=True)
demo.launch()
|