File size: 5,724 Bytes
62ef5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import shutil
import os
import argparse
import torch
import glob
from tqdm import tqdm
from PIL import Image
from collections import OrderedDict
from src.models.vit.config import load_config
import torchvision.transforms as transforms
import cv2
from skimage import io

from src.models.CNN.ColorVidNet import GeneralColorVidNet
from src.models.vit.embed import GeneralEmbedModel
from src.models.CNN.NonlocalNet import GeneralWarpNet
from src.models.CNN.FrameColor import frame_colorization
from src.utils import (
    RGB2Lab,
    ToTensor,
    Normalize,
    uncenter_l,
    tensor_lab2rgb,
    SquaredPadding,
    UnpaddingSquare
)

def load_params(ckpt_file):
    params = torch.load(ckpt_file)
    new_params = []
    for key, value in params.items():
        new_params.append((key, value))
    return OrderedDict(new_params)

def custom_transform(transforms, img):
    for transform in transforms:
        if isinstance(transform, SquaredPadding):
            img,padding=transform(img, return_paddings=True)
        else:
            img = transform(img)
    return img.to(device), padding

def save_frames(predicted_rgb, video_name, frame_name):
    if predicted_rgb is not None:
        predicted_rgb = np.clip(predicted_rgb, 0, 255).astype(np.uint8)
        io.imsave(os.path.join(args.output_video_path, video_name, frame_name), predicted_rgb)
    

def colorize_video(video_name):
    frames_list = os.listdir(os.path.join(args.input_videos_path, video_name))
    frames_list.sort()
    refs_list = os.listdir(os.path.join(args.reference_images_path, video_name))
    refs_list.sort()
    
    for ref_path in refs_list:
        frame_ref = Image.open(os.path.join(args.reference_images_path, video_name, ref_path)).convert("RGB")
        I_last_lab_predict = None
        
        IB_lab, IB_paddings = custom_transform(transforms, frame_ref)
        IB_lab = IB_lab.unsqueeze(0).to(device)
        IB_l = IB_lab[:, 0:1, :, :]
        IB_ab = IB_lab[:, 1:3, :, :]
        
        with torch.no_grad():
            I_reference_lab = IB_lab
            I_reference_l = I_reference_lab[:, 0:1, :, :]
            I_reference_ab = I_reference_lab[:, 1:3, :, :]
            I_reference_rgb = tensor_lab2rgb(torch.cat((uncenter_l(I_reference_l), I_reference_ab), dim=1)).to(device)
            features_B = embed_net(I_reference_rgb)
        
        for frame_name in frames_list:
            curr_frame = Image.open(os.path.join(args.input_videos_path, video_name, frame_name)).convert("RGB")
            IA_lab, IA_paddings = custom_transform(transforms, curr_frame)
            IA_lab = IA_lab.unsqueeze(0).to(device)
            IA_l = IA_lab[:, 0:1, :, :]
            IA_ab = IA_lab[:, 1:3, :, :]
            
            if I_last_lab_predict is None:
                I_last_lab_predict = torch.zeros_like(IA_lab).to(device)
            
            with torch.no_grad():
                I_current_lab = IA_lab
                I_current_ab_predict, _, _ = frame_colorization(
                    I_current_lab,
                    I_reference_lab,
                    I_last_lab_predict,
                    features_B,
                    embed_net,
                    nonlocal_net,
                    colornet,
                    luminance_noise=0,
                    temperature=1e-10,
                    joint_training=False
                )
                I_last_lab_predict = torch.cat((IA_l, I_current_ab_predict), dim=1)
        
        IA_predict_rgb = tensor_lab2rgb(torch.cat((uncenter_l(IA_l), I_current_ab_predict), dim=1))
        save_frames(IA_predict_rgb, video_name, frame_name)
            
    

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Video Colorization')
    parser.add_argument("--input_videos_path", type=str, help="path to input video")
    parser.add_argument("--reference_images_path", type=str, help="path to reference image")
    parser.add_argument("--output_video_path", type=str, help="path to output video")
    parser.add_argument("--weight_path", type=str, default="checkpoints/epoch_5/", help="path to weight")
    parser.add_argument("--device", type=str, default="cpu", help="device to run the model")
    parser.add_argument("--high_resolution", action="store_true", help="use high resolution")
    parser.add_argument("--wls_filter_on", action="store_true", help="use wls filter")
    args = parser.parse_args()
    
    device = torch.device(args.device)
    
    if os.path.exists(args.output_video_path):
        shutil.rmtree(args.output_video_path)
    os.makedirs(args.output_video_path, exist_ok=True)
    
    videos_list = os.listdir(args.input_videos_path)

    embed_net=GeneralEmbedModel(pretrained_model="swin-tiny", device=device).to(device)
    nonlocal_net = GeneralWarpNet(feature_channel=128).to(device)
    colornet=GeneralColorVidNet(7).to(device)
    
    embed_net.eval()
    nonlocal_net.eval()
    colornet.eval()
    
    # Load weights
    embed_net_params = load_params(os.path.join(args.weight_path, "embed_net.pth"))
    nonlocal_net_params = load_params(os.path.join(args.weight_path, "nonlocal_net.pth"))
    colornet_params = load_params(os.path.join(args.weight_path, "colornet.pth"))
    
    embed_net.load_state_dict(embed_net_params, strict=True)
    nonlocal_net.load_state_dict(nonlocal_net_params, strict=True)
    colornet.load_state_dict(colornet_params, strict=True)

    transforms = [SquaredPadding(target_size=224),
                 RGB2Lab(),
                 ToTensor(),
                 Normalize()]
    
    # center_padder = CenterPad((224,224))
    with torch.no_grad():
        for video_name in tqdm(videos_list):
            colorize_video(video_name)